Class faiss::gpu::GpuIndexIVF

class GpuIndexIVF : public faiss::gpu::GpuIndex

Base class of all GPU IVF index types. This (for now) deliberately does not inherit from IndexIVF, as many of the public data members and functionality in IndexIVF is not supported in the same manner on the GPU.

Subclassed by faiss::gpu::GpuIndexIVFFlat, faiss::gpu::GpuIndexIVFPQ, faiss::gpu::GpuIndexIVFScalarQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexIVF(GpuResourcesProvider *provider, int dims, faiss::MetricType metric, float metricArg, int nlist, GpuIndexIVFConfig config = GpuIndexIVFConfig())

Version that auto-constructs a flat coarse quantizer based on the desired metric

GpuIndexIVF(GpuResourcesProvider *provider, Index *coarseQuantizer, int dims, faiss::MetricType metric, float metricArg, int nlist, GpuIndexIVFConfig config = GpuIndexIVFConfig())

Version that takes a coarse quantizer instance. The GpuIndexIVF does not own the coarseQuantizer instance by default (functions like IndexIVF).

~GpuIndexIVF() override
void copyFrom(const faiss::IndexIVF *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::IndexIVF *index) const

Copy what we have to the CPU equivalent.

virtual void updateQuantizer() = 0

Should be called if the user ever changes the state of the IVF coarse quantizer manually (e.g., substitutes a new instance or changes vectors in the coarse quantizer outside the scope of training)

int getNumLists() const

Returns the number of inverted lists we’re managing.

int getListLength(int listId) const

Returns the number of vectors present in a particular inverted list.

std::vector<uint8_t> getListVectorData(int listId, bool gpuFormat = false) const

Return the encoded vector data contained in a particular inverted list, for debugging purposes. If gpuFormat is true, the data is returned as it is encoded in the GPU-side representation. Otherwise, it is converted to the CPU format. compliant format, while the native GPU format may differ.

std::vector<idx_t> getListIndices(int listId) const

Return the vector indices contained in a particular inverted list, for debugging purposes.

void setNumProbes(int nprobe)

Sets the number of list probes per query.

int getNumProbes() const

Returns our current number of list probes per query.

void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const SearchParametersIVF *params = nullptr) const

Same interface as faiss::IndexIVF, in order to search a set of vectors pre-quantized by the IVF quantizer. Does not include IndexIVFStats as that can only be obtained on the host via a GPU d2h copy.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reset() = 0

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:

recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

Public Members

ClusteringParameters cp

Exposing this like the CPU version for manipulation.

int nlist

Exposing this like the CPU version for query.

int nprobe

Exposing this like the CPU version for manipulation.

Index *quantizer

A user-pluggable coarse quantizer.

bool own_fields

Whether or not we own the coarse quantizer.

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

void verifyIVFSettings_() const
virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

void trainQuantizer_(idx_t n, const float *x)
virtual void addImpl_(int n, const float *x, const idx_t *ids) override

Called from GpuIndex for add/add_with_ids.

virtual void searchImpl_(int n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

Protected Attributes

const GpuIndexIVFConfig ivfConfig_

Our configuration options.

std::shared_ptr<IVFBase> baseIndex_

For a trained/initialized index, this is a reference to the base class.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

Private Functions

void init_()

Shared initialization functions.