File IndexIDMap.h

namespace faiss

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implementation of k-means clustering with many variants.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. PQ4 SIMD packing and accumulation functions

The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.

The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. This file contains callbacks for kernels that compute distances.

Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is

x[ i * d + j ]

where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.

The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Definition of inverted lists + a few common classes that implement the interface.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. In this file are the implementations of extra metrics beyond L2 and inner product

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.

Typedefs

using IndexIDMap = IndexIDMapTemplate<Index>
using IndexBinaryIDMap = IndexIDMapTemplate<IndexBinary>
using IndexIDMap2 = IndexIDMap2Template<Index>
using IndexBinaryIDMap2 = IndexIDMap2Template<IndexBinary>
template<typename IndexT>
struct IndexIDMapTemplate : public IndexT
#include <IndexIDMap.h>

Index that translates search results to ids

Subclassed by faiss::IndexIDMap2Template< IndexT >

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexIDMapTemplate(IndexT *index)
void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override
Parameters:

xids – if non-null, ids to store for the vectors (size n)

void add(idx_t n, const component_t *x) override

this will fail. Use add_with_ids

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
void train(idx_t n, const component_t *x) override
void reset() override
size_t remove_ids(const IDSelector &sel) override

remove ids adapted to IndexFlat

void range_search(idx_t n, const component_t *x, distance_t radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override
void merge_from(IndexT &otherIndex, idx_t add_id = 0) override
void check_compatible_for_merge(const IndexT &otherIndex) const override
~IndexIDMapTemplate() override
inline IndexIDMapTemplate()

Public Members

IndexT *index = nullptr
bool own_fields = false

! the sub-index

std::vector<idx_t> id_map

! whether pointers are deleted in destructo

template<typename IndexT>
struct IndexIDMap2Template : public faiss::IndexIDMapTemplate<IndexT>
#include <IndexIDMap.h>

same as IndexIDMap but also provides an efficient reconstruction implementation via a 2-way index

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexIDMap2Template(IndexT *index)
void construct_rev_map()

make the rev_map from scratch

void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override
size_t remove_ids(const IDSelector &sel) override
void reconstruct(idx_t key, component_t *recons) const override
void check_consistency() const

check that the rev_map and the id_map are in sync

void merge_from(IndexT &otherIndex, idx_t add_id = 0) override
inline ~IndexIDMap2Template() override
inline IndexIDMap2Template()
void add(idx_t n, const component_t *x) override

this will fail. Use add_with_ids

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
void train(idx_t n, const component_t *x) override
void reset() override
void range_search(idx_t n, const component_t *x, distance_t radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override
void check_compatible_for_merge(const IndexT &otherIndex) const override

Public Members

std::unordered_map<idx_t, idx_t> rev_map
IndexT *index = nullptr
bool own_fields = false

! the sub-index

std::vector<idx_t> id_map

! whether pointers are deleted in destructo

struct IDSelectorTranslated : public faiss::IDSelector

Public Functions

inline IDSelectorTranslated(const std::vector<int64_t> &id_map, const IDSelector *sel)
inline IDSelectorTranslated(IndexBinaryIDMap &index_idmap, const IDSelector *sel)
inline IDSelectorTranslated(IndexIDMap &index_idmap, const IDSelector *sel)
inline virtual bool is_member(idx_t id) const override

Public Members

const std::vector<int64_t> &id_map
const IDSelector *sel