File IndexIVFFlat.h

namespace faiss

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implementation of k-means clustering with many variants.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. PQ4 SIMD packing and accumulation functions

The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.

The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. This file contains callbacks for kernels that compute distances.

Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is

x[ i * d + j ]

where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.

The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Definition of inverted lists + a few common classes that implement the interface.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. In this file are the implementations of extra metrics beyond L2 and inner product

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implements a few neural net layers, mainly to support QINCo

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.

struct IndexIVFFlat : public faiss::IndexIVF
#include <IndexIVFFlat.h>

Inverted file with stored vectors. Here the inverted file pre-selects the vectors to be searched, but they are not otherwise encoded, the code array just contains the raw float entries.

Subclassed by faiss::IndexIVFFlatDedup

Public Functions

IndexIVFFlat(Index *quantizer, size_t d, size_t nlist_, MetricType = METRIC_L2)
virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

IndexIVFFlat()
struct IndexIVFFlatDedup : public faiss::IndexIVFFlat

Public Functions

IndexIVFFlatDedup(Index *quantizer, size_t d, size_t nlist_, MetricType = METRIC_L2)
virtual void train(idx_t n, const float *x) override

also dedups the training set

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

implemented for all IndexIVF* classes

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

not implemented

virtual void update_vectors(int nv, const idx_t *idx, const float *v) override

not implemented

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

not implemented

inline IndexIVFFlatDedup()
virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

Public Members

std::unordered_multimap<idx_t, idx_t> instances

Maps ids stored in the index to the ids of vectors that are the same. When a vector is unique, it does not appear in the instances map