# File MinMaxFP16-inl.h

namespace faiss

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implementation of k-means clustering with many variants.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. PQ4 SIMD packing and accumulation functions

The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.

The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. This file contains callbacks for kernels that compute distances.

Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is

x[ i * d + j ]

where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.

The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Definition of inverted lists + a few common classes that implement the interface.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. In this file are the implementations of extra metrics beyond L2 and inner product

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implements a few neural net layers, mainly to support QINCo

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.

namespace cppcontrib
template<typename SubIndexT>
struct IndexMinMaxFP16Decoder

Public Static Functions

static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)

Public Static Attributes

static constexpr intptr_t dim = SubIndexT::dim