File AutoTune.h

namespace faiss

Implementation of k-means clustering with many variants.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)

PQ4 SIMD packing and accumulation functions

The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.

The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.

This file contains callbacks for kernels that compute distances.

Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is

x[ i * d + j ]

where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.

I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.

The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.

Definition of inverted lists + a few common classes that implement the interface.

Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.

In this file are the implementations of extra metrics beyond L2 and inner product

Implements a few neural net layers, mainly to support QINCo

Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.

struct AutoTuneCriterion
#include <AutoTune.h>

Evaluation criterion. Returns a performance measure in [0,1], higher is better.

Subclassed by faiss::IntersectionCriterion, faiss::OneRecallAtRCriterion

Public Functions

AutoTuneCriterion(idx_t nq, idx_t nnn)
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

virtual double evaluate(const float *D, const idx_t *I) const = 0

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline virtual ~AutoTuneCriterion()

Public Members

idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct OneRecallAtRCriterion : public faiss::AutoTuneCriterion

Public Functions

OneRecallAtRCriterion(idx_t nq, idx_t R)
virtual double evaluate(const float *D, const idx_t *I) const override

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline ~OneRecallAtRCriterion() override
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

Public Members

idx_t R
idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct IntersectionCriterion : public faiss::AutoTuneCriterion

Public Functions

IntersectionCriterion(idx_t nq, idx_t R)
virtual double evaluate(const float *D, const idx_t *I) const override

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline ~IntersectionCriterion() override
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

Public Members

idx_t R
idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct OperatingPoint
#include <AutoTune.h>

Maintains a list of experimental results. Each operating point is a (perf, t, key) triplet, where higher perf and lower t is better. The key field is an arbitrary identifier for the operating point.

Includes primitives to extract the Pareto-optimal operating points in the (perf, t) space.

Public Members

double perf

performance measure (output of a Criterion)

double t

corresponding execution time (ms)

std::string key

key that identifies this op pt

int64_t cno

integer identifier

struct OperatingPoints

Public Functions

OperatingPoints()
int merge_with(const OperatingPoints &other, const std::string &prefix = "")

add operating points from other to this, with a prefix to the keys

void clear()
bool add(double perf, double t, const std::string &key, size_t cno = 0)

add a performance measure. Return whether it is an optimal point

double t_for_perf(double perf) const

get time required to obtain a given performance measure

void display(bool only_optimal = true) const

easy-to-read output

void all_to_gnuplot(const char *fname) const

output to a format easy to digest by gnuplot

void optimal_to_gnuplot(const char *fname) const

Public Members

std::vector<OperatingPoint> all_pts

all operating points

std::vector<OperatingPoint> optimal_pts

optimal operating points, sorted by perf

struct ParameterRange
#include <AutoTune.h>

possible values of a parameter, sorted from least to most expensive/accurate

Public Members

std::string name
std::vector<double> values
struct ParameterSpace
#include <AutoTune.h>

Uses a-priori knowledge on the Faiss indexes to extract tunable parameters.

Subclassed by faiss::gpu::GpuParameterSpace

Public Functions

ParameterSpace()
size_t n_combinations() const

nb of combinations, = product of values sizes

bool combination_ge(size_t c1, size_t c2) const

returns whether combinations c1 >= c2 in the tuple sense

std::string combination_name(size_t cno) const

get string representation of the combination

void display() const

print a description on stdout

ParameterRange &add_range(const std::string &name)

add a new parameter (or return it if it exists)

virtual void initialize(const Index *index)

initialize with reasonable parameters for the index

void set_index_parameters(Index *index, size_t cno) const

set a combination of parameters on an index

void set_index_parameters(Index *index, const char *param_string) const

set a combination of parameters described by a string

virtual void set_index_parameter(Index *index, const std::string &name, double val) const

set one of the parameters, returns whether setting was successful

void update_bounds(size_t cno, const OperatingPoint &op, double *upper_bound_perf, double *lower_bound_t) const

find an upper bound on the performance and a lower bound on t for configuration cno given another operating point op

void explore(Index *index, size_t nq, const float *xq, const AutoTuneCriterion &crit, OperatingPoints *ops) const

explore operating points

Parameters:
  • index – index to run on

  • xq – query vectors (size nq * index.d)

  • crit – selection criterion

  • ops – resulting operating points

inline virtual ~ParameterSpace()

Public Members

std::vector<ParameterRange> parameter_ranges

all tunable parameters

int verbose

verbosity during exploration

int n_experiments

nb of experiments during optimization (0 = try all combinations)

size_t batchsize

maximum number of queries to submit at a time.

bool thread_over_batches

use multithreading over batches (useful to benchmark independent single-searches)

double min_test_duration

run tests several times until they reach at least this duration (to avoid jittering in MT mode)