File IndexNSG.h
-
namespace faiss
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implementation of k-means clustering with many variants.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. PQ4 SIMD packing and accumulation functions
The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.
The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. This file contains callbacks for kernels that compute distances.
Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is
x[ i * d + j ]
where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.
The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Definition of inverted lists + a few common classes that implement the interface.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. In this file are the implementations of extra metrics beyond L2 and inner product
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Implements a few neural net layers, mainly to support QINCo
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.
-
struct IndexNSG : public faiss::Index
- #include <IndexNSG.h>
The NSG index is a normal random-access index with a NSG link structure built on top
Subclassed by faiss::IndexNSGFlat, faiss::IndexNSGPQ, faiss::IndexNSGSQ
Public Functions
-
explicit IndexNSG(int d = 0, int R = 32, MetricType metric = METRIC_L2)
-
~IndexNSG() override
-
virtual void add(idx_t n, const float *x) override
Add n vectors of dimension d to the index.
Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.
- Parameters:
n – number of vectors
x – input matrix, size n * d
-
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
entry point for search
-
virtual void reconstruct(idx_t key, float *recons) const override
Reconstruct a stored vector (or an approximation if lossy coding)
this function may not be defined for some indexes
- Parameters:
key – id of the vector to reconstruct
recons – reconstucted vector (size d)
-
virtual void reset() override
removes all elements from the database.
Public Members
-
bool own_fields = false
the sequential storage
-
bool is_built = false
the index is built or not
-
int GK = 64
K of KNN graph for building.
-
char build_type = 0
indicate how to build a knn graph
-
int nndescent_S = 10
parameters for nndescent
-
int nndescent_R = 100
-
int nndescent_L
-
int nndescent_iter = 10
-
explicit IndexNSG(int d = 0, int R = 32, MetricType metric = METRIC_L2)
-
struct IndexNSGFlat : public faiss::IndexNSG
- #include <IndexNSG.h>
Flat index topped with with a NSG structure to access elements more efficiently.
Public Functions
-
IndexNSGFlat()
-
IndexNSGFlat(int d, int R, MetricType metric = METRIC_L2)
-
virtual void add(idx_t n, const float *x) override
Add n vectors of dimension d to the index.
Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.
- Parameters:
n – number of vectors
x – input matrix, size n * d
-
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
entry point for search
-
virtual void reconstruct(idx_t key, float *recons) const override
Reconstruct a stored vector (or an approximation if lossy coding)
this function may not be defined for some indexes
- Parameters:
key – id of the vector to reconstruct
recons – reconstucted vector (size d)
-
virtual void reset() override
removes all elements from the database.
Public Members
-
bool own_fields = false
the sequential storage
-
bool is_built = false
the index is built or not
-
int GK = 64
K of KNN graph for building.
-
char build_type = 0
indicate how to build a knn graph
-
int nndescent_S = 10
parameters for nndescent
-
int nndescent_R = 100
-
int nndescent_L
-
int nndescent_iter = 10
-
IndexNSGFlat()
-
struct IndexNSGPQ : public faiss::IndexNSG
- #include <IndexNSG.h>
PQ index topped with with a NSG structure to access elements more efficiently.
Public Functions
-
IndexNSGPQ()
-
IndexNSGPQ(int d, int pq_m, int M, int pq_nbits = 8)
-
virtual void add(idx_t n, const float *x) override
Add n vectors of dimension d to the index.
Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.
- Parameters:
n – number of vectors
x – input matrix, size n * d
-
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
entry point for search
-
virtual void reconstruct(idx_t key, float *recons) const override
Reconstruct a stored vector (or an approximation if lossy coding)
this function may not be defined for some indexes
- Parameters:
key – id of the vector to reconstruct
recons – reconstucted vector (size d)
-
virtual void reset() override
removes all elements from the database.
Public Members
-
bool own_fields = false
the sequential storage
-
bool is_built = false
the index is built or not
-
int GK = 64
K of KNN graph for building.
-
char build_type = 0
indicate how to build a knn graph
-
int nndescent_S = 10
parameters for nndescent
-
int nndescent_R = 100
-
int nndescent_L
-
int nndescent_iter = 10
-
IndexNSGPQ()
-
struct IndexNSGSQ : public faiss::IndexNSG
- #include <IndexNSG.h>
SQ index topped with with a NSG structure to access elements more efficiently.
Public Functions
-
IndexNSGSQ()
-
IndexNSGSQ(int d, ScalarQuantizer::QuantizerType qtype, int M, MetricType metric = METRIC_L2)
-
virtual void add(idx_t n, const float *x) override
Add n vectors of dimension d to the index.
Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.
- Parameters:
n – number of vectors
x – input matrix, size n * d
-
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
entry point for search
-
virtual void reconstruct(idx_t key, float *recons) const override
Reconstruct a stored vector (or an approximation if lossy coding)
this function may not be defined for some indexes
- Parameters:
key – id of the vector to reconstruct
recons – reconstucted vector (size d)
-
virtual void reset() override
removes all elements from the database.
Public Members
-
bool own_fields = false
the sequential storage
-
bool is_built = false
the index is built or not
-
int GK = 64
K of KNN graph for building.
-
char build_type = 0
indicate how to build a knn graph
-
int nndescent_S = 10
parameters for nndescent
-
int nndescent_R = 100
-
int nndescent_L
-
int nndescent_iter = 10
-
IndexNSGSQ()
-
struct IndexNSG : public faiss::Index