Struct faiss::IndexFlat1D

struct IndexFlat1D : public faiss::IndexFlatL2

optimized version for 1D “vectors”.

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexFlat1D(bool continuous_update = true)
void update_permutation()

if not continuous_update, call this between the last add and the first search

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void reset() override

removes all elements from the database.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Warn: the distances returned are L1 not L2.

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

void sync_l2norms()
void clear_l2norms()
virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

void compute_distance_subset(idx_t n, const float *x, idx_t k, float *distances, const idx_t *labels) const

compute distance with a subset of vectors

Parameters:
  • x – query vectors, size n * d

  • labels – indices of the vectors that should be compared for each query vector, size n * k

  • distances – corresponding output distances, size n * k

inline float *get_xb()
inline const float *get_xb() const
virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

bool continuous_update = true

is the permutation updated continuously?

std::vector<idx_t> perm

sorted database indices

std::vector<float> cached_l2norms
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type