Struct faiss::LocalSearchQuantizer
-
struct LocalSearchQuantizer : public faiss::AdditiveQuantizer
Implementation of LSQ/LSQ++ described in the following two papers:
Revisiting additive quantization Julieta Martinez, et al. ECCV 2016
LSQ++: Lower running time and higher recall in multi-codebook quantization Julieta Martinez, et al. ECCV 2018
This implementation is mostly translated from the Julia implementations by Julieta Martinez: (https://github.com/una-dinosauria/local-search-quantization, https://github.com/una-dinosauria/Rayuela.jl)
The trained codes are stored in
codebooks
which is calledcentroids
in PQ and RQ.Public Types
-
enum Search_type_t
Encodes how search is performed and how vectors are encoded.
Values:
-
enumerator ST_decompress
decompress database vector
-
enumerator ST_LUT_nonorm
use a LUT, don’t include norms (OK for IP or normalized vectors)
-
enumerator ST_norm_from_LUT
compute the norms from the look-up tables (cost is in O(M^2))
-
enumerator ST_norm_float
use a LUT, and store float32 norm with the vectors
-
enumerator ST_norm_qint8
use a LUT, and store 8bit-quantized norm
-
enumerator ST_norm_qint4
-
enumerator ST_norm_cqint8
use a LUT, and store non-uniform quantized norm
-
enumerator ST_norm_cqint4
-
enumerator ST_norm_lsq2x4
use a 2x4 bits lsq as norm quantizer (for fast scan)
-
enumerator ST_norm_rq2x4
use a 2x4 bits rq as norm quantizer (for fast scan)
-
enumerator ST_decompress
Public Functions
-
LocalSearchQuantizer(size_t d, size_t M, size_t nbits, Search_type_t search_type = ST_decompress)
-
LocalSearchQuantizer()
-
~LocalSearchQuantizer() override
-
virtual void train(size_t n, const float *x) override
Train the quantizer
- Parameters:
x – training vectors, size n * d
-
virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override
Encode a set of vectors
- Parameters:
x – vectors to encode, size n * d
codes – output codes, size n * code_size
n – number of vectors
centroids – centroids to be added to x, size n * d
-
void update_codebooks(const float *x, const int32_t *codes, size_t n)
Update codebooks given encodings
- Parameters:
x – training vectors, size n * d
codes – encoded training vectors, size n * M
n – number of vectors
-
void icm_encode(int32_t *codes, const float *x, size_t n, size_t ils_iters, std::mt19937 &gen) const
Encode vectors given codebooks using iterative conditional mode (icm).
- Parameters:
codes – output codes, size n * M
x – vectors to encode, size n * d
n – number of vectors
ils_iters – number of iterations of iterative local search
-
void icm_encode_impl(int32_t *codes, const float *x, const float *unaries, std::mt19937 &gen, size_t n, size_t ils_iters, bool verbose) const
-
void icm_encode_step(int32_t *codes, const float *unaries, const float *binaries, size_t n, size_t n_iters) const
-
void perturb_codes(int32_t *codes, size_t n, std::mt19937 &gen) const
Add some perturbation to codes
- Parameters:
codes – codes to be perturbed, size n * M
n – number of vectors
-
void perturb_codebooks(float T, const std::vector<float> &stddev, std::mt19937 &gen)
Add some perturbation to codebooks
- Parameters:
T – temperature of simulated annealing
stddev – standard derivations of each dimension in training data
-
void compute_binary_terms(float *binaries) const
Compute binary terms
- Parameters:
binaries – binary terms, size M * M * K * K
-
void compute_unary_terms(const float *x, float *unaries, size_t n) const
Compute unary terms
- Parameters:
n – number of vectors
x – vectors to encode, size n * d
unaries – unary terms, size n * M * K
-
float evaluate(const int32_t *codes, const float *x, size_t n, float *objs = nullptr) const
Helper function to compute reconstruction error
- Parameters:
codes – encoded codes, size n * M
x – vectors to encode, size n * d
n – number of vectors
objs – if it is not null, store reconstruction error of each vector into it, size n
-
uint64_t encode_norm(float norm) const
encode a norm into norm_bits bits
-
uint32_t encode_qcint(float x) const
encode norm by non-uniform scalar quantization
-
float decode_qcint(uint32_t c) const
decode norm by non-uniform scalar quantization
-
void set_derived_values()
Train the norm quantizer.
-
void train_norm(size_t n, const float *norms)
-
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override
Quantize a set of vectors
- Parameters:
x – input vectors, size n * d
codes – output codes, size n * code_size
-
void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const
pack a series of code to bit-compact format
- Parameters:
codes – codes to be packed, size n * code_size
packed_codes – output bit-compact codes
ld_codes – leading dimension of codes
norms – norms of the vectors (size n). Will be computed if needed but not provided
centroids – centroids to be added to x, size n * d
-
virtual void decode(const uint8_t *codes, float *x, size_t n) const override
Decode a set of vectors
- Parameters:
codes – codes to decode, size n * code_size
x – output vectors, size n * d
-
virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const
Decode a set of vectors in non-packed format
- Parameters:
codes – codes to decode, size n * ld_codes
x – output vectors, size n * d
-
template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
-
void decode_64bit(idx_t n, float *x) const
decoding function for a code in a 64-bit word
-
virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const
Compute inner-product look-up tables. Used in the centroid search functions.
- Parameters:
xq – query vector, size (n, d)
LUT – look-up table, size (n, total_codebook_size)
alpha – compute alpha * inner-product
ld_lut – leading dimension of LUT
-
void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const
exact IP search
-
void compute_centroid_norms(float *norms) const
For L2 search we need the L2 norms of the centroids
- Parameters:
norms – output norms table, size total_codebook_size
Public Members
-
size_t K
number of codes per codebook
-
size_t train_iters = 25
number of iterations in training
-
size_t encode_ils_iters = 16
iterations of local search in encoding
-
size_t train_ils_iters = 8
iterations of local search in training
-
size_t icm_iters = 4
number of iterations in icm
-
float p = 0.5f
temperature factor
-
float lambd = 1e-2f
regularization factor
-
size_t chunk_size = 10000
nb of vectors to encode at a time
-
int random_seed = 0x12345
seed for random generator
-
size_t nperts = 4
number of perturbation in each code
if non-NULL, use this encoder to encode (owned by the object)
-
lsq::IcmEncoderFactory *icm_encoder_factory = nullptr
-
bool update_codebooks_with_double = true
-
size_t M
number of codebooks
-
std::vector<size_t> nbits
bits for each step
-
std::vector<float> codebooks
codebooks
-
std::vector<uint64_t> codebook_offsets
-
size_t tot_bits = 0
total number of bits (indexes + norms)
-
size_t norm_bits = 0
bits allocated for the norms
-
size_t total_codebook_size = 0
size of the codebook in vectors
-
bool only_8bit = false
are all nbits = 8 (use faster decoder)
-
bool verbose = false
verbose during training?
-
bool is_trained = false
is trained or not
-
IndexFlat1D qnorm
store and search norms
-
std::vector<float> norm_tabs
store norms of codebook entries for 4-bit fastscan search
-
size_t max_mem_distances = 5 * (size_t(1) << 30)
norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated
-
Search_type_t search_type
Also determines what’s in the codes.
-
float norm_min = NAN
min/max for quantization of norms
-
float norm_max = NAN
-
size_t d
size of the input vectors
-
size_t code_size
bytes per indexed vector
-
enum Search_type_t