Namespace faiss

namespace faiss

Implementation of k-means clustering with many variants.

Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

IDSelector is intended to define a subset of vectors to handle (for removal or as subset to search)

PQ4 SIMD packing and accumulation functions

The basic kernel accumulates nq query vectors with bbs = nb * 2 * 16 vectors and produces an output matrix for that. It is interesting for nq * nb <= 4, otherwise register spilling becomes too large.

The implementation of these functions is spread over 3 cpp files to reduce parallel compile times. Templates are instantiated explicitly.

This file contains callbacks for kernels that compute distances.

Throughout the library, vectors are provided as float * pointers. Most algorithms can be optimized when several vectors are processed (added/searched) together in a batch. In this case, they are passed in as a matrix. When n vectors of size d are provided as float * x, component j of vector i is

x[ i * d + j ]

where 0 <= i < n and 0 <= j < d. In other words, matrices are always compact. When specifying the size of the matrix, we call it an n*d matrix, which implies a row-major storage.

I/O functions can read/write to a filename, a file handle or to an object that abstracts the medium.

The read functions return objects that should be deallocated with delete. All references within these objectes are owned by the object.

Definition of inverted lists + a few common classes that implement the interface.

Since IVF (inverted file) indexes are of so much use for large-scale use cases, we group a few functions related to them in this small library. Most functions work both on IndexIVFs and IndexIVFs embedded within an IndexPreTransform.

In this file are the implementations of extra metrics beyond L2 and inner product

Implements a few neural net layers, mainly to support QINCo

Defines a few objects that apply transformations to a set of vectors Often these are pre-processing steps.

Typedefs

using IndexIDMap = IndexIDMapTemplate<Index>
using IndexBinaryIDMap = IndexIDMapTemplate<IndexBinary>
using IndexIDMap2 = IndexIDMap2Template<Index>
using IndexBinaryIDMap2 = IndexIDMap2Template<IndexBinary>
using IVFSearchParameters = SearchParametersIVF
using IndexReplicas = IndexReplicasTemplate<Index>
using IndexBinaryReplicas = IndexReplicasTemplate<IndexBinary>
using IndexShards = IndexShardsTemplate<Index>
using IndexBinaryShards = IndexShardsTemplate<IndexBinary>
using ConcatenatedInvertedLists = HStackInvertedLists
using idx_t = int64_t

all vector indices are this type

typedef HeapArray<CMin<float, int64_t>> float_minheap_array_t
typedef HeapArray<CMin<int, int64_t>> int_minheap_array_t
typedef HeapArray<CMax<float, int64_t>> float_maxheap_array_t
typedef HeapArray<CMax<int, int64_t>> int_maxheap_array_t

Enums

enum MetricType

The metric space for vector comparison for Faiss indices and algorithms.

Most algorithms support both inner product and L2, with the flat (brute-force) indices supporting additional metric types for vector comparison.

Values:

enumerator METRIC_INNER_PRODUCT

maximum inner product search

enumerator METRIC_L2

squared L2 search

enumerator METRIC_L1

L1 (aka cityblock)

enumerator METRIC_Linf

infinity distance

enumerator METRIC_Lp

L_p distance, p is given by a faiss::Index metric_arg

enumerator METRIC_Canberra

some additional metrics defined in scipy.spatial.distance

enumerator METRIC_BrayCurtis
enumerator METRIC_JensenShannon
enumerator METRIC_Jaccard

sum_i(min(a_i, b_i)) / sum_i(max(a_i, b_i)) where a_i, b_i > 0

enumerator METRIC_NaNEuclidean

Squared Eucliden distance, ignoring NaNs.

enumerator METRIC_ABS_INNER_PRODUCT

abs(x | y): the distance to a hyperplane

Functions

Index *clone_index(const Index*)
Quantizer *clone_Quantizer(const Quantizer *quant)
IndexBinary *clone_binary_index(const IndexBinary *index)
float kmeans_clustering(size_t d, size_t n, size_t k, const float *x, float *centroids)

simplified interface

Parameters:
  • d – dimension of the data

  • n – nb of training vectors

  • k – nb of output centroids

  • x – training set (size n * d)

  • centroids – output centroids (size k * d)

Returns:

final quantization error

std::string reverse_index_factory(const faiss::Index *index)
std::string reverse_index_factory(const faiss::IndexBinary *index)
template<typename PQDecoderT>
inline float distance_single_code_generic(const size_t M, const size_t nbits, const float *sim_table, const uint8_t *code)

Returns the distance to a single code.

template<typename PQDecoderT> inline void distance_four_codes_generic (const size_t M, const size_t nbits, const float *sim_table, const uint8_t *__restrict code0, const uint8_t *__restrict code1, const uint8_t *__restrict code2, const uint8_t *__restrict code3, float &result0, float &result1, float &result2, float &result3)

Combines 4 operations of distance_single_code() General-purpose version.

template<typename PQDecoderT>
inline float distance_single_code(const size_t M, const size_t nbits, const float *sim_table, const uint8_t *code)
template<typename PQDecoderT> inline void distance_four_codes (const size_t M, const size_t nbits, const float *sim_table, const uint8_t *__restrict code0, const uint8_t *__restrict code1, const uint8_t *__restrict code2, const uint8_t *__restrict code3, float &result0, float &result1, float &result2, float &result3)
void handleExceptions(std::vector<std::pair<int, std::exception_ptr>> &exceptions)

Handle multiple exceptions from worker threads, throwing an appropriate exception that aggregates the information The pair int is the thread that generated the exception

std::string demangle_cpp_symbol(const char *name)

make typeids more readable

int search_from_candidates(const HNSW &hnsw, DistanceComputer &qdis, ResultHandler<HNSW::C> &res, HNSW::MinimaxHeap &candidates, VisitedTable &vt, HNSWStats &stats, int level, int nres_in = 0, const SearchParametersHNSW *params = nullptr)
HNSWStats greedy_update_nearest(const HNSW &hnsw, DistanceComputer &qdis, int level, HNSW::storage_idx_t &nearest, float &d_nearest)
std::priority_queue<HNSW::Node> search_from_candidate_unbounded(const HNSW &hnsw, const HNSW::Node &node, DistanceComputer &qdis, int ef, VisitedTable *vt, HNSWStats &stats)
void search_neighbors_to_add(HNSW &hnsw, DistanceComputer &qdis, std::priority_queue<HNSW::NodeDistCloser> &results, int entry_point, float d_entry_point, int level, VisitedTable &vt, bool reference_version = false)
void read_index_header(Index *idx, IOReader *f)
void read_direct_map(DirectMap *dm, IOReader *f)
void read_ivf_header(IndexIVF *ivf, IOReader *f, std::vector<std::vector<idx_t>> *ids = nullptr)
void read_InvertedLists(IndexIVF *ivf, IOReader *f, int io_flags)
ArrayInvertedLists *set_array_invlist(IndexIVF *ivf, std::vector<std::vector<idx_t>> &ids)
void read_ProductQuantizer(ProductQuantizer *pq, IOReader *f)
void read_ScalarQuantizer(ScalarQuantizer *ivsc, IOReader *f)
uint32_t fourcc(const char sx[4])

cast a 4-character string to a uint32_t that can be written and read easily

uint32_t fourcc(const std::string &sx)
void fourcc_inv(uint32_t x, char str[5])
std::string fourcc_inv(uint32_t x)
std::string fourcc_inv_printable(uint32_t x)
void smawk(const idx_t nrows, const idx_t ncols, const float *x, idx_t *argmins)

SMAWK algorithm. Find the row minima of a monotone matrix.

Expose this for testing.

Parameters:
  • nrows – number of rows

  • ncols – number of columns

  • x – input matrix, size (nrows, ncols)

  • argmins – argmin of each row

double kmeans1d(const float *x, size_t n, size_t nclusters, float *centroids)

Exact 1D K-Means by dynamic programming

From “Fast Exact k-Means, k-Medians and Bregman Divergence Clustering in 1D” Allan Grønlund, Kasper Green Larsen, Alexander Mathiasen, Jesper Sindahl Nielsen, Stefan Schneider, Mingzhou Song, ArXiV’17

Section 2.2

https://arxiv.org/abs/1701.07204

Parameters:
  • x – input 1D array

  • n – input array length

  • nclusters – number of clusters

  • centroids – output centroids, size nclusters

Returns:

imbalancce factor

void pq4_pack_codes(const uint8_t *codes, size_t ntotal, size_t M, size_t nb, size_t bbs, size_t nsq, uint8_t *blocks)

Pack codes for consumption by the SIMD kernels. The unused bytes are set to 0.

Parameters:
  • codes – input codes, size (ntotal, ceil(M / 2))

  • ntotal – number of input codes

  • nb – output number of codes (ntotal rounded up to a multiple of bbs)

  • nsq – number of sub-quantizers (=M rounded up to a muliple of 2)

  • bbs – size of database blocks (multiple of 32)

  • blocks – output array, size nb * nsq / 2.

void pq4_pack_codes_range(const uint8_t *codes, size_t M, size_t i0, size_t i1, size_t bbs, size_t nsq, uint8_t *blocks)

Same as pack_codes but write in a given range of the output, leaving the rest untouched. Assumes allocated entries are 0 on input.

Parameters:
  • codes – input codes, size (i1 - i0, ceil(M / 2))

  • i0 – first output code to write

  • i1 – last output code to write

  • blocks – output array, size at least ceil(i1 / bbs) * bbs * nsq / 2

uint8_t pq4_get_packed_element(const uint8_t *data, size_t bbs, size_t nsq, size_t vector_id, size_t sq)

get a single element from a packed codes table

Parameters:
  • vector_id – vector id

  • sq – subquantizer (< nsq)

void pq4_set_packed_element(uint8_t *data, uint8_t code, size_t bbs, size_t nsq, size_t vector_id, size_t sq)

set a single element “code” into a packed codes table

Parameters:
  • vector_id – vector id

  • sq – subquantizer (< nsq)

void pq4_pack_LUT(int nq, int nsq, const uint8_t *src, uint8_t *dest)

Pack Look-up table for consumption by the kernel.

Parameters:
  • nq – number of queries

  • nsq – number of sub-quantizers (muliple of 2)

  • src – input array, size (nq, 16)

  • dest – output array, size (nq, 16)

void pq4_accumulate_loop(int nq, size_t nb, int bbs, int nsq, const uint8_t *codes, const uint8_t *LUT, SIMDResultHandler &res, const NormTableScaler *scaler)

Loop over database elements and accumulate results into result handler

Parameters:
  • nq – number of queries

  • nb – number of database elements

  • bbs – size of database blocks (multiple of 32)

  • nsq – number of sub-quantizers (muliple of 2)

  • codes – packed codes array

  • LUT – packed look-up table

  • scaler – scaler to scale the encoded norm

int pq4_qbs_to_nq(int qbs)
int pq4_preferred_qbs(int nq)

return the preferred decomposition in blocks for a nb of queries.

int pq4_pack_LUT_qbs(int fqbs, int nsq, const uint8_t *src, uint8_t *dest)

Pack Look-up table for consumption by the kernel.

Parameters:
  • qbs – 4-bit encoded number of query blocks, the total number of queries handled (nq) is deduced from it

  • nsq – number of sub-quantizers (muliple of 2)

  • src – input array, size (nq, 16)

  • dest – output array, size (nq, 16)

Returns:

nq

int pq4_pack_LUT_qbs_q_map(int qbs, int nsq, const uint8_t *src, const int *q_map, uint8_t *dest)

Same as pq4_pack_LUT_qbs, except the source vectors are remapped with q_map

void pq4_accumulate_loop_qbs(int qbs, size_t nb, int nsq, const uint8_t *codes, const uint8_t *LUT, SIMDResultHandler &res, const NormTableScaler *scaler = nullptr)

Run accumulation loop.

Parameters:
  • qbs – 4-bit encoded number of queries

  • nb – number of database codes (mutliple of bbs)

  • nsq – number of sub-quantizers

  • codes – encoded database vectors (packed)

  • LUT – look-up table (packed)

  • res – call-back for the resutls

  • scaler – scaler to scale the encoded norm

void beam_search_encode_step(size_t d, size_t K, const float *cent, size_t n, size_t beam_size, const float *residuals, size_t m, const int32_t *codes, size_t new_beam_size, int32_t *new_codes, float *new_residuals, float *new_distances, Index *assign_index = nullptr, ApproxTopK_mode_t approx_topk = ApproxTopK_mode_t::EXACT_TOPK)

Encode a residual by sampling from a centroid table.

This is a single encoding step the residual quantizer. It allows low-level access to the encoding function, exposed mainly for unit tests.

Parameters:
  • n – number of vectors to handle

  • residuals – vectors to encode, size (n, beam_size, d)

  • cent – centroids, size (K, d)

  • beam_size – input beam size

  • m – size of the codes for the previous encoding steps

  • codes – code array for the previous steps of the beam (n, beam_size, m)

  • new_beam_size – output beam size (should be <= K * beam_size)

  • new_codes – output codes, size (n, new_beam_size, m + 1)

  • new_residuals – output residuals, size (n, new_beam_size, d)

  • new_distances – output distances, size (n, new_beam_size)

  • assign_index – if non-NULL, will be used to perform assignment

void beam_search_encode_step_tab(size_t K, size_t n, size_t beam_size, const float *codebook_cross_norms, size_t ldc, const uint64_t *codebook_offsets, const float *query_cp, size_t ldqc, const float *cent_norms_i, size_t m, const int32_t *codes, const float *distances, size_t new_beam_size, int32_t *new_codes, float *new_distances, ApproxTopK_mode_t approx_topk = ApproxTopK_mode_t::EXACT_TOPK)

Encode a set of vectors using their dot products with the codebooks

Parameters:
  • K – number of vectors in the codebook

  • n – nb of vectors to encode

  • beam_size – input beam size

  • codebook_cross_norms – inner product of this codebook with the m previously encoded codebooks

  • codebook_offsets – offsets into codebook_cross_norms for each previous codebook

  • query_cp – dot products of query vectors with ???

  • cent_norms_i – norms of centroids

template<class Consumer, class ...Types>
Consumer::T dispatch_knn_ResultHandler(size_t nx, float *vals, int64_t *ids, size_t k, MetricType metric, const IDSelector *sel, Consumer &consumer, Types... args)
template<class Consumer, class ...Types>
Consumer::T dispatch_range_ResultHandler(RangeSearchResult *res, float radius, MetricType metric, const IDSelector *sel, Consumer &consumer, Types... args)
Index *index_factory(int d, const char *description, MetricType metric = METRIC_L2)

Build and index with the sequence of processing steps described in the string.

IndexBinary *index_binary_factory(int d, const char *description)
void write_index(const Index *idx, const char *fname, int io_flags = 0)
void write_index(const Index *idx, FILE *f, int io_flags = 0)
void write_index(const Index *idx, IOWriter *writer, int io_flags = 0)
void write_index_binary(const IndexBinary *idx, const char *fname)
void write_index_binary(const IndexBinary *idx, FILE *f)
void write_index_binary(const IndexBinary *idx, IOWriter *writer)
Index *read_index(const char *fname, int io_flags = 0)
Index *read_index(FILE *f, int io_flags = 0)
Index *read_index(IOReader *reader, int io_flags = 0)
IndexBinary *read_index_binary(const char *fname, int io_flags = 0)
IndexBinary *read_index_binary(FILE *f, int io_flags = 0)
IndexBinary *read_index_binary(IOReader *reader, int io_flags = 0)
void write_VectorTransform(const VectorTransform *vt, const char *fname)
void write_VectorTransform(const VectorTransform *vt, IOWriter *f)
VectorTransform *read_VectorTransform(const char *fname)
VectorTransform *read_VectorTransform(IOReader *f)
ProductQuantizer *read_ProductQuantizer(const char *fname)
ProductQuantizer *read_ProductQuantizer(IOReader *reader)
void write_ProductQuantizer(const ProductQuantizer *pq, const char *fname)
void write_ProductQuantizer(const ProductQuantizer *pq, IOWriter *f)
void write_InvertedLists(const InvertedLists *ils, IOWriter *f)
InvertedLists *read_InvertedLists(IOReader *reader, int io_flags = 0)
void initialize_IVFPQ_precomputed_table(int &use_precomputed_table, const Index *quantizer, const ProductQuantizer &pq, AlignedTable<float> &precomputed_table, bool by_residual, bool verbose)

Pre-compute distance tables for IVFPQ with by-residual and METRIC_L2

Parameters:
  • use_precomputed_table – (I/O) =-1: force disable =0: decide heuristically (default: use tables only if they are < precomputed_tables_max_bytes), set use_precomputed_table on output =1: tables that work for all quantizers (size 256 * nlist * M) =2: specific version for MultiIndexQuantizer (much more compact)

  • precomputed_table – precomputed table to initialize

inline uint64_t lo_build(uint64_t list_id, uint64_t offset)
inline uint64_t lo_listno(uint64_t lo)
inline uint64_t lo_offset(uint64_t lo)
constexpr bool is_similarity_metric(MetricType metric_type)

this function is used to distinguish between min and max indexes since we need to support similarity and dis-similarity metrics in a flexible way

template<int A = 32>
inline bool is_aligned_pointer(const void *x)
inline uint16_t encode_bf16(const float f)
inline float decode_bf16(const uint16_t v)
float fvec_L2sqr(const float *x, const float *y, size_t d)

Squared L2 distance between two vectors.

float fvec_inner_product(const float *x, const float *y, size_t d)

inner product

float fvec_L1(const float *x, const float *y, size_t d)

L1 distance.

float fvec_Linf(const float *x, const float *y, size_t d)

infinity distance

void fvec_inner_product_batch_4(const float *x, const float *y0, const float *y1, const float *y2, const float *y3, const size_t d, float &dis0, float &dis1, float &dis2, float &dis3)

Special version of inner product that computes 4 distances between x and yi, which is performance oriented.

void fvec_L2sqr_batch_4(const float *x, const float *y0, const float *y1, const float *y2, const float *y3, const size_t d, float &dis0, float &dis1, float &dis2, float &dis3)

Special version of L2sqr that computes 4 distances between x and yi, which is performance oriented.

void pairwise_L2sqr(int64_t d, int64_t nq, const float *xq, int64_t nb, const float *xb, float *dis, int64_t ldq = -1, int64_t ldb = -1, int64_t ldd = -1)

Compute pairwise distances between sets of vectors

Parameters:
  • d – dimension of the vectors

  • nq – nb of query vectors

  • nb – nb of database vectors

  • xq – query vectors (size nq * d)

  • xb – database vectors (size nb * d)

  • dis – output distances (size nq * nb)

  • ldq, ldb, ldd – strides for the matrices

void fvec_inner_products_ny(float *ip, const float *x, const float *y, size_t d, size_t ny)
void fvec_L2sqr_ny(float *dis, const float *x, const float *y, size_t d, size_t ny)
void fvec_L2sqr_ny_transposed(float *dis, const float *x, const float *y, const float *y_sqlen, size_t d, size_t d_offset, size_t ny)
size_t fvec_L2sqr_ny_nearest(float *distances_tmp_buffer, const float *x, const float *y, size_t d, size_t ny)
size_t fvec_L2sqr_ny_nearest_y_transposed(float *distances_tmp_buffer, const float *x, const float *y, const float *y_sqlen, size_t d, size_t d_offset, size_t ny)
float fvec_norm_L2sqr(const float *x, size_t d)

squared norm of a vector

void fvec_norms_L2(float *norms, const float *x, size_t d, size_t nx)

compute the L2 norms for a set of vectors

Parameters:
  • norms – output norms, size nx

  • x – set of vectors, size nx * d

void fvec_norms_L2sqr(float *norms, const float *x, size_t d, size_t nx)

same as fvec_norms_L2, but computes squared norms

void fvec_renorm_L2(size_t d, size_t nx, float *x)
void inner_product_to_L2sqr(float *dis, const float *nr1, const float *nr2, size_t n1, size_t n2)
void fvec_add(size_t d, const float *a, const float *b, float *c)

compute c := a + b for vectors

c and a can overlap, c and b can overlap

Parameters:
  • a – size d

  • b – size d

  • c – size d

void fvec_add(size_t d, const float *a, float b, float *c)

compute c := a + b for a, c vectors and b a scalar

c and a can overlap

Parameters:
  • a – size d

  • c – size d

void fvec_sub(size_t d, const float *a, const float *b, float *c)

compute c := a - b for vectors

c and a can overlap, c and b can overlap

Parameters:
  • a – size d

  • b – size d

  • c – size d

void fvec_inner_products_by_idx(float *ip, const float *x, const float *y, const int64_t *ids, size_t d, size_t nx, size_t ny)

compute the inner product between x and a subset y of ny vectors defined by ids

ip(i, j) = inner_product(x(i, :), y(ids(i, j), :))

Parameters:
  • ip – output array, size nx * ny

  • x – first-term vector, size nx * d

  • y – second-term vector, size (max(ids) + 1) * d

  • ids – ids to sample from y, size nx * ny

void fvec_L2sqr_by_idx(float *dis, const float *x, const float *y, const int64_t *ids, size_t d, size_t nx, size_t ny)

compute the squared L2 distances between x and a subset y of ny vectors defined by ids

dis(i, j) = inner_product(x(i, :), y(ids(i, j), :))

Parameters:
  • dis – output array, size nx * ny

  • x – first-term vector, size nx * d

  • y – second-term vector, size (max(ids) + 1) * d

  • ids – ids to sample from y, size nx * ny

void pairwise_indexed_L2sqr(size_t d, size_t n, const float *x, const int64_t *ix, const float *y, const int64_t *iy, float *dis)

compute dis[j] = L2sqr(x[ix[j]], y[iy[j]]) forall j=0..n-1

Parameters:
  • x – size (max(ix) + 1, d)

  • y – size (max(iy) + 1, d)

  • ix – size n

  • iy – size n

  • dis – size n

void pairwise_indexed_inner_product(size_t d, size_t n, const float *x, const int64_t *ix, const float *y, const int64_t *iy, float *dis)

compute dis[j] = inner_product(x[ix[j]], y[iy[j]]) forall j=0..n-1

Parameters:
  • x – size (max(ix) + 1, d)

  • y – size (max(iy) + 1, d)

  • ix – size n

  • iy – size n

  • dis – size n

void knn_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_minheap_array_t *res, const IDSelector *sel = nullptr)

Return the k nearest neighbors of each of the nx vectors x among the ny vector y, w.r.t to max inner product.

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size ny * d

  • res – result heap structure, which also provides k. Sorted on output

void knn_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, size_t k, float *distances, int64_t *indexes, const IDSelector *sel = nullptr)

Return the k nearest neighbors of each of the nx vectors x among the ny vector y, for the inner product metric.

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size ny * d

  • distances – output distances, size nq * k

  • indexes – output vector ids, size nq * k

void knn_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_maxheap_array_t *res, const float *y_norm2 = nullptr, const IDSelector *sel = nullptr)

Return the k nearest neighbors of each of the nx vectors x among the ny vector y, for the L2 distance

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size ny * d

  • res – result heap strcture, which also provides k. Sorted on output

  • y_norm2 – (optional) norms for the y vectors (nullptr or size ny)

  • sel – search in this subset of vectors

void knn_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, size_t k, float *distances, int64_t *indexes, const float *y_norm2 = nullptr, const IDSelector *sel = nullptr)

Return the k nearest neighbors of each of the nx vectors x among the ny vector y, for the L2 distance

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size ny * d

  • distances – output distances, size nq * k

  • indexes – output vector ids, size nq * k

  • y_norm2 – (optional) norms for the y vectors (nullptr or size ny)

  • sel – search in this subset of vectors

void knn_inner_products_by_idx(const float *x, const float *y, const int64_t *subset, size_t d, size_t nx, size_t ny, size_t nsubset, size_t k, float *vals, int64_t *ids, int64_t ld_ids = -1)

Find the max inner product neighbors for nx queries in a set of ny vectors indexed by ids. May be useful for re-ranking a pre-selected vector list

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size (max(ids) + 1) * d

  • ids – subset of database vectors to consider, size (nx, nsubset)

  • res – result structure

  • ld_ids – stride for the ids array. -1: use nsubset, 0: all queries process the same subset

void knn_L2sqr_by_idx(const float *x, const float *y, const int64_t *subset, size_t d, size_t nx, size_t ny, size_t nsubset, size_t k, float *vals, int64_t *ids, int64_t ld_subset = -1)

Find the nearest neighbors for nx queries in a set of ny vectors indexed by ids. May be useful for re-ranking a pre-selected vector list

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size (max(ids) + 1) * d

  • subset – subset of database vectors to consider, size (nx, nsubset)

  • res – rIDesult structure

  • ld_subset – stride for the subset array. -1: use nsubset, 0: all queries process the same subset

void range_search_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *result, const IDSelector *sel = nullptr)

Return the k nearest neighbors of each of the nx vectors x among the ny vector y, w.r.t to max inner product

Parameters:
  • x – query vectors, size nx * d

  • y – database vectors, size ny * d

  • radius – search radius around the x vectors

  • result – result structure

void range_search_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *result, const IDSelector *sel = nullptr)

same as range_search_L2sqr for the inner product similarity

void compute_PQ_dis_tables_dsub2(size_t d, size_t ksub, const float *centroids, size_t nx, const float *x, bool is_inner_product, float *dis_tables)

specialized function for PQ2

void fvec_madd(size_t n, const float *a, float bf, const float *b, float *c)

compute c := a + bf * b for a, b and c tables

Parameters:
  • n – size of the tables

  • a – size n

  • b – size n

  • c – result table, size n

int fvec_madd_and_argmin(size_t n, const float *a, float bf, const float *b, float *c)

same as fvec_madd, also return index of the min of the result table

Returns:

index of the min of table c

bool exhaustive_L2sqr_fused_cmax(const float *x, const float *y, size_t d, size_t nx, size_t ny, Top1BlockResultHandler<CMax<float, int64_t>> &res, const float *y_norms)
template<class Consumer, class ...Types>
Consumer::T dispatch_VectorDistance(size_t d, MetricType metric, float metric_arg, Consumer &consumer, Types... args)
void pairwise_extra_distances(int64_t d, int64_t nq, const float *xq, int64_t nb, const float *xb, MetricType mt, float metric_arg, float *dis, int64_t ldq = -1, int64_t ldb = -1, int64_t ldd = -1)
void knn_extra_metrics(const float *x, const float *y, size_t d, size_t nx, size_t ny, MetricType mt, float metric_arg, size_t k, float *distances, int64_t *indexes)
FlatCodesDistanceComputer *get_extra_distance_computer(size_t d, MetricType mt, float metric_arg, size_t nb, const float *xb)

get a DistanceComputer that refers to this type of distance and indexes a flat array of size nb

inline uint16_t encode_fp16(float x)
inline float decode_fp16(uint16_t x)
void bitvec_print(const uint8_t *b, size_t d)
void fvecs2bitvecs(const float *x, uint8_t *b, size_t d, size_t n)
void bitvecs2fvecs(const uint8_t *b, float *x, size_t d, size_t n)
void fvec2bitvec(const float *x, uint8_t *b, size_t d)
void bitvec_shuffle(size_t n, size_t da, size_t db, const int *order, const uint8_t *a, uint8_t *b)

Shuffle the bits from b(i, j) := a(i, order[j])

void hammings(const uint8_t *a, const uint8_t *b, size_t na, size_t nb, size_t nbytespercode, hamdis_t *dis)

Compute a set of Hamming distances between na and nb binary vectors

Parameters:
  • a – size na * nbytespercode

  • b – size nb * nbytespercode

  • nbytespercode – should be multiple of 8

  • dis – output distances, size na * nb

void hammings_knn_hc(int_maxheap_array_t *ha, const uint8_t *a, const uint8_t *b, size_t nb, size_t ncodes, int ordered, ApproxTopK_mode_t approx_topk_mode = ApproxTopK_mode_t::EXACT_TOPK)

Return the k smallest Hamming distances for a set of binary query vectors, using a max heap.

Parameters:
  • a – queries, size ha->nh * ncodes

  • b – database, size nb * ncodes

  • nb – number of database vectors

  • ncodes – size of the binary codes (bytes)

  • ordered – if != 0: order the results by decreasing distance (may be bottleneck for k/n > 0.01)

  • approx_topk_mode – allows to use approximate top-k facilities to speedup heap

void hammings_knn(int_maxheap_array_t *ha, const uint8_t *a, const uint8_t *b, size_t nb, size_t ncodes, int ordered)
void hammings_knn_mc(const uint8_t *a, const uint8_t *b, size_t na, size_t nb, size_t k, size_t ncodes, int32_t *distances, int64_t *labels)

Return the k smallest Hamming distances for a set of binary query vectors, using counting max.

Parameters:
  • a – queries, size na * ncodes

  • b – database, size nb * ncodes

  • na – number of query vectors

  • nb – number of database vectors

  • k – number of vectors/distances to return

  • ncodes – size of the binary codes (bytes)

  • distances – output distances from each query vector to its k nearest neighbors

  • labels – output ids of the k nearest neighbors to each query vector

void hamming_range_search(const uint8_t *a, const uint8_t *b, size_t na, size_t nb, int radius, size_t ncodes, RangeSearchResult *result)

same as hammings_knn except we are doing a range search with radius

void hamming_count_thres(const uint8_t *bs1, const uint8_t *bs2, size_t n1, size_t n2, hamdis_t ht, size_t ncodes, size_t *nptr)
size_t match_hamming_thres(const uint8_t *bs1, const uint8_t *bs2, size_t n1, size_t n2, hamdis_t ht, size_t ncodes, int64_t *idx, hamdis_t *dis)
void crosshamming_count_thres(const uint8_t *dbs, size_t n, hamdis_t ht, size_t ncodes, size_t *nptr)
inline hamdis_t hamming(const uint64_t *bs1, const uint64_t *bs2, size_t nwords)
void generalized_hammings_knn_hc(int_maxheap_array_t *ha, const uint8_t *a, const uint8_t *b, size_t nb, size_t code_size, int ordered = true)

generalized Hamming distances (= count number of code bytes that are the same)

void pack_bitstrings(size_t n, size_t M, int nbit, const int32_t *unpacked, uint8_t *packed, size_t code_size)

Pack a set of n codes of size M * nbit

Parameters:
  • n – number of codes to pack

  • M – number of elementary codes per code

  • nbit – number of bits per elementary code

  • unpacked – input unpacked codes, size (n, M)

  • packed – output packed codes, size (n, code_size)

  • code_size – should be >= ceil(M * nbit / 8)

void pack_bitstrings(size_t n, size_t M, const int32_t *nbits, const int32_t *unpacked, uint8_t *packed, size_t code_size)

Pack a set of n codes of variable sizes

Parameters:

nbit – number of bits per entry (size M)

void unpack_bitstrings(size_t n, size_t M, int nbit, const uint8_t *packed, size_t code_size, int32_t *unpacked)

Unpack a set of n codes of size M * nbit

Parameters:
  • n – number of codes to pack

  • M – number of elementary codes per code

  • nbit – number of bits per elementary code

  • unpacked – input unpacked codes, size (n, M)

  • packed – output packed codes, size (n, code_size)

  • code_size – should be >= ceil(M * nbit / 8)

void unpack_bitstrings(size_t n, size_t M, const int32_t *nbits, const uint8_t *packed, size_t code_size, int32_t *unpacked)

Unpack a set of n codes of variable sizes

Parameters:

nbit – number of bits per entry (size M)

template<size_t nbits, typename T>
inline T hamming(const uint8_t *bs1, const uint8_t *bs2)
template<size_t nbits>
inline hamdis_t hamming(const uint64_t *bs1, const uint64_t *bs2)
template<>
inline hamdis_t hamming<64>(const uint64_t *pa, const uint64_t *pb)
template<>
inline hamdis_t hamming<128>(const uint64_t *pa, const uint64_t *pb)
template<>
inline hamdis_t hamming<256>(const uint64_t *pa, const uint64_t *pb)
inline int generalized_hamming_64(uint64_t a)
inline int popcount32(uint32_t x)
inline int popcount64(uint64_t x)
SPECIALIZED_HC (4)
SPECIALIZED_HC (8)
SPECIALIZED_HC (16)
SPECIALIZED_HC (20)
SPECIALIZED_HC (32)
SPECIALIZED_HC (64)
template<class Consumer, class ...Types>
Consumer::T dispatch_HammingComputer(int code_size, Consumer &consumer, Types... args)
template<class C>
inline void heap_pop(size_t k, typename C::T *bh_val, typename C::TI *bh_ids)

Pops the top element from the heap defined by bh_val[0..k-1] and bh_ids[0..k-1]. on output the element at k-1 is undefined.

template<class C>
inline void heap_push(size_t k, typename C::T *bh_val, typename C::TI *bh_ids, typename C::T val, typename C::TI id)

Pushes the element (val, ids) into the heap bh_val[0..k-2] and bh_ids[0..k-2]. on output the element at k-1 is defined.

template<class C>
inline void heap_replace_top(size_t k, typename C::T *bh_val, typename C::TI *bh_ids, typename C::T val, typename C::TI id)

Replaces the top element from the heap defined by bh_val[0..k-1] and bh_ids[0..k-1], and for identical bh_val[] values also sorts by bh_ids[] values.

template<typename T>
inline void minheap_pop(size_t k, T *bh_val, int64_t *bh_ids)
template<typename T>
inline void minheap_push(size_t k, T *bh_val, int64_t *bh_ids, T val, int64_t ids)
template<typename T>
inline void minheap_replace_top(size_t k, T *bh_val, int64_t *bh_ids, T val, int64_t ids)
template<typename T>
inline void maxheap_pop(size_t k, T *bh_val, int64_t *bh_ids)
template<typename T>
inline void maxheap_push(size_t k, T *bh_val, int64_t *bh_ids, T val, int64_t ids)
template<typename T>
inline void maxheap_replace_top(size_t k, T *bh_val, int64_t *bh_ids, T val, int64_t ids)
template<class C>
inline void heap_pop(size_t k, std::pair<typename C::T, typename C::TI> *bh)

Pops the top element from the heap defined by bh_val[0..k-1] and bh_ids[0..k-1]. on output the element at k-1 is undefined.

template<class C>
inline void heap_push(size_t k, std::pair<typename C::T, typename C::TI> *bh, typename C::T val, typename C::TI id)

Pushes the element (val, ids) into the heap bh_val[0..k-2] and bh_ids[0..k-2]. on output the element at k-1 is defined.

template<class C>
inline void heap_replace_top(size_t k, std::pair<typename C::T, typename C::TI> *bh, typename C::T val, typename C::TI id)

Replaces the top element from the heap defined by bh_val[0..k-1] and bh_ids[0..k-1], and for identical bh_val[] values also sorts by bh_ids[] values.

template<class C>
inline void heap_heapify(size_t k, typename C::T *bh_val, typename C::TI *bh_ids, const typename C::T *x = nullptr, const typename C::TI *ids = nullptr, size_t k0 = 0)
template<typename T>
inline void minheap_heapify(size_t k, T *bh_val, int64_t *bh_ids, const T *x = nullptr, const int64_t *ids = nullptr, size_t k0 = 0)
template<typename T>
inline void maxheap_heapify(size_t k, T *bh_val, int64_t *bh_ids, const T *x = nullptr, const int64_t *ids = nullptr, size_t k0 = 0)
template<class C>
inline void heap_addn(size_t k, typename C::T *bh_val, typename C::TI *bh_ids, const typename C::T *x, const typename C::TI *ids, size_t n)
template<typename T>
inline void minheap_addn(size_t k, T *bh_val, int64_t *bh_ids, const T *x, const int64_t *ids, size_t n)
template<typename T>
inline void maxheap_addn(size_t k, T *bh_val, int64_t *bh_ids, const T *x, const int64_t *ids, size_t n)
template<typename C>
inline size_t heap_reorder(size_t k, typename C::T *bh_val, typename C::TI *bh_ids)
template<typename T>
inline size_t minheap_reorder(size_t k, T *bh_val, int64_t *bh_ids)
template<typename T>
inline size_t maxheap_reorder(size_t k, T *bh_val, int64_t *bh_ids)
template<class C>
inline void indirect_heap_pop(size_t k, const typename C::T *bh_val, typename C::TI *bh_ids)
template<class C>
inline void indirect_heap_push(size_t k, const typename C::T *bh_val, typename C::TI *bh_ids, typename C::TI id)
template<class idx_t, class C>
void merge_knn_results(size_t n, size_t k, typename C::TI nshard, const typename C::T *all_distances, const idx_t *all_labels, typename C::T *distances, idx_t *labels)

Merge result tables from several shards. The per-shard results are assumed to be sorted. Note that the C comparator is reversed w.r.t. the usual top-k element heap because we want the best (ie. lowest for L2) result to be on top, not the worst. Also, it needs to hold an index of a shard id (ie. usually int32 is more than enough).

Parameters:
  • all_distances – size (nshard, n, k)

  • all_labels – size (nshard, n, k)

  • distances – output distances, size (n, k)

  • labels – output labels, size (n, k)

template<typename T>
inline T cmin_nextafter(T x)
template<typename T>
inline T cmax_nextafter(T x)
template<>
inline float cmin_nextafter<float>(float x)
template<>
inline float cmax_nextafter<float>(float x)
template<>
inline uint16_t cmin_nextafter<uint16_t>(uint16_t x)
template<>
inline uint16_t cmax_nextafter<uint16_t>(uint16_t x)
template<class C>
C::T partition_fuzzy(typename C::T *vals, typename C::TI *ids, size_t n, size_t q_min, size_t q_max, size_t *q_out)

partitions the table into 0:q and q:n where all elements above q are >= all elements below q (for C = CMax, for CMin comparisons are reversed)

Returns the partition threshold. The elements q:n are destroyed on output.

template<class C>
inline C::T partition(typename C::T *vals, typename C::TI *ids, size_t n, size_t q)

simplified interface for when the parition is not fuzzy

void simd_histogram_8(const uint16_t *data, int n, uint16_t min, int shift, int *hist)

low level SIMD histogramming functions 8-bin histogram of (x - min) >> shift values outside the range are ignored. the data table should be aligned on 32 bytes

void simd_histogram_16(const uint16_t *data, int n, uint16_t min, int shift, int *hist)

same for 16-bin histogram

void float_rand(float *x, size_t n, int64_t seed)
void float_randn(float *x, size_t n, int64_t seed)
void int64_rand(int64_t *x, size_t n, int64_t seed)
void byte_rand(uint8_t *x, size_t n, int64_t seed)
void int64_rand_max(int64_t *x, size_t n, uint64_t max, int64_t seed)
void rand_perm(int *perm, size_t n, int64_t seed)
void rand_perm_splitmix64(int *perm, size_t n, int64_t seed)
void rand_smooth_vectors(size_t n, size_t d, float *x, int64_t seed)
inline simd16uint16 min(simd16uint16 a, simd16uint16 b)
inline simd16uint16 max(simd16uint16 a, simd16uint16 b)
inline simd16uint16 combine2x2(simd16uint16 a, simd16uint16 b)
inline uint32_t cmp_ge32(simd16uint16 d0, simd16uint16 d1, simd16uint16 thr)
inline uint32_t cmp_le32(simd16uint16 d0, simd16uint16 d1, simd16uint16 thr)
inline simd16uint16 hadd(const simd16uint16 &a, const simd16uint16 &b)
inline void cmplt_min_max_fast(const simd16uint16 candidateValues, const simd16uint16 candidateIndices, const simd16uint16 currentValues, const simd16uint16 currentIndices, simd16uint16 &minValues, simd16uint16 &minIndices, simd16uint16 &maxValues, simd16uint16 &maxIndices)
inline simd32uint8 uint16_to_uint8_saturate(simd16uint16 a, simd16uint16 b)
inline uint32_t get_MSBs(simd32uint8 a)

get most significant bit of each byte

inline simd32uint8 blendv(simd32uint8 a, simd32uint8 b, simd32uint8 mask)

use MSB of each byte of mask to select a byte between a and b

inline void cmplt_min_max_fast(const simd8uint32 candidateValues, const simd8uint32 candidateIndices, const simd8uint32 currentValues, const simd8uint32 currentIndices, simd8uint32 &minValues, simd8uint32 &minIndices, simd8uint32 &maxValues, simd8uint32 &maxIndices)
inline simd8float32 hadd(simd8float32 a, simd8float32 b)
inline simd8float32 unpacklo(simd8float32 a, simd8float32 b)
inline simd8float32 unpackhi(simd8float32 a, simd8float32 b)
inline simd8float32 fmadd(simd8float32 a, simd8float32 b, simd8float32 c)
inline void cmplt_and_blend_inplace(const simd8float32 candidateValues, const simd8uint32 candidateIndices, simd8float32 &lowestValues, simd8uint32 &lowestIndices)
inline void cmplt_min_max_fast(const simd8float32 candidateValues, const simd8uint32 candidateIndices, const simd8float32 currentValues, const simd8uint32 currentIndices, simd8float32 &minValues, simd8uint32 &minIndices, simd8float32 &maxValues, simd8uint32 &maxIndices)
inline simd16uint16 combine4x2(simd32uint16 a, simd32uint16 b)
inline simd16uint16 min(const simd16uint16 &av, const simd16uint16 &bv)
inline simd16uint16 max(const simd16uint16 &av, const simd16uint16 &bv)
inline simd16uint16 combine2x2(const simd16uint16 &a, const simd16uint16 &b)
inline uint32_t cmp_ge32(const simd16uint16 &d0, const simd16uint16 &d1, const simd16uint16 &thr)
inline uint32_t cmp_le32(const simd16uint16 &d0, const simd16uint16 &d1, const simd16uint16 &thr)
inline simd32uint8 uint16_to_uint8_saturate(const simd16uint16 &a, const simd16uint16 &b)
inline uint32_t get_MSBs(const simd32uint8 &a)

get most significant bit of each byte

inline simd32uint8 blendv(const simd32uint8 &a, const simd32uint8 &b, const simd32uint8 &mask)

use MSB of each byte of mask to select a byte between a and b

inline simd8float32 hadd(const simd8float32 &a, const simd8float32 &b)
inline simd8float32 unpacklo(const simd8float32 &a, const simd8float32 &b)
inline simd8float32 unpackhi(const simd8float32 &a, const simd8float32 &b)
inline simd8float32 fmadd(const simd8float32 &a, const simd8float32 &b, const simd8float32 &c)
void fvec_argsort(size_t n, const float *vals, size_t *perm)

Indirect sort of a floating-point array

Parameters:
  • n – size of the array

  • vals – array to sort, size n

  • perm – output: permutation of [0..n-1], st. vals[perm[i + 1]] >= vals[perm[i]]

void fvec_argsort_parallel(size_t n, const float *vals, size_t *perm)

Same as fvec_argsort, parallelized

void bucket_sort(size_t nval, const uint64_t *vals, uint64_t nbucket, int64_t *lims, int64_t *perm, int nt = 0)

Bucket sort of a list of values

Parameters:
  • vals – values to sort, size nval, max value nbucket - 1

  • lims – output limits of buckets, size nbucket + 1

  • perm – output buckets, the elements of bucket i are in perm[lims[i]:lims[i + 1]]

  • nt – number of threads (0 = pure sequential code)

void matrix_bucket_sort_inplace(size_t nrow, size_t ncol, int32_t *vals, int32_t nbucket, int64_t *lims, int nt = 0)

in-place bucket sort (with attention to memory=>int32) on input the values are in a nrow * col matrix we want to store the row numbers in the output.

Parameters:
  • vals – positive values to sort, size nrow * ncol, max value nbucket - 1

  • lims – output limits of buckets, size nbucket + 1

  • nt – number of threads (0 = pure sequential code)

void matrix_bucket_sort_inplace(size_t nrow, size_t ncol, int64_t *vals, int64_t nbucket, int64_t *lims, int nt = 0)

same with int64 elements

void hashtable_int64_to_int64_init(int log2_capacity, int64_t *tab)

Hashtable implementation for int64 -> int64 with external storage implemented for fast batch add and lookup.

tab is of size 2 * (1 << log2_capacity) n is the number of elements to add or search

adding several values in a same batch: an arbitrary one gets added in different batches: the newer batch overwrites. raises an exception if capacity is exhausted.

void hashtable_int64_to_int64_add(int log2_capacity, int64_t *tab, size_t n, const int64_t *keys, const int64_t *vals)
void hashtable_int64_to_int64_lookup(int log2_capacity, const int64_t *tab, size_t n, const int64_t *keys, int64_t *vals)
std::string get_compile_options()

get compile options

std::string get_version()
double getmillisecs()

ms elapsed since some arbitrary epoch

size_t get_mem_usage_kb()

get current RSS usage in kB

uint64_t get_cycles()
void reflection(const float *u, float *x, size_t n, size_t d, size_t nu)
void matrix_qr(int m, int n, float *a)

compute the Q of the QR decomposition for m > n

Parameters:

a – size n * m: input matrix and output Q

void ranklist_handle_ties(int k, int64_t *idx, const float *dis)

distances are supposed to be sorted. Sorts indices with same distance

size_t ranklist_intersection_size(size_t k1, const int64_t *v1, size_t k2, const int64_t *v2)

count the number of common elements between v1 and v2 algorithm = sorting + bissection to avoid double-counting duplicates

size_t merge_result_table_with(size_t n, size_t k, int64_t *I0, float *D0, const int64_t *I1, const float *D1, bool keep_min = true, int64_t translation = 0)

merge a result table into another one

Parameters:
  • I0, D0 – first result table, size (n, k)

  • I1, D1 – second result table, size (n, k)

  • keep_min – if true, keep min values, otherwise keep max

  • translation – add this value to all I1’s indexes

Returns:

nb of values that were taken from the second table

double imbalance_factor(int n, int k, const int64_t *assign)

a balanced assignment has a IF of 1

double imbalance_factor(int k, const int *hist)

same, takes a histogram as input

int ivec_hist(size_t n, const int *v, int vmax, int *hist)

compute histogram on v

void bincode_hist(size_t n, size_t nbits, const uint8_t *codes, int *hist)

Compute histogram of bits on a code array

Parameters:
  • codes – size(n, nbits / 8)

  • hist – size(nbits): nb of 1s in the array of codes

uint64_t ivec_checksum(size_t n, const int32_t *a)

compute a checksum on a table.

uint64_t bvec_checksum(size_t n, const uint8_t *a)

compute a checksum on a table.

void bvecs_checksum(size_t n, size_t d, const uint8_t *a, uint64_t *cs)

compute checksums for the rows of a matrix

Parameters:
  • n – number of rows

  • d – size per row

  • a – matrix to handle, size n * d

  • cs – output checksums, size n

const float *fvecs_maybe_subsample(size_t d, size_t *n, size_t nmax, const float *x, bool verbose = false, int64_t seed = 1234)

random subsamples a set of vectors if there are too many of them

Parameters:
  • d – dimension of the vectors

  • n – on input: nb of input vectors, output: nb of output vectors

  • nmax – max nb of vectors to keep

  • x – input array, size *n-by-d

  • seed – random seed to use for sampling

Returns:

x or an array allocated with new [] with *n vectors

void binary_to_real(size_t d, const uint8_t *x_in, float *x_out)

Convert binary vector to +1/-1 valued float vector.

Parameters:
  • d – dimension of the vector (multiple of 8)

  • x_in – input binary vector (uint8_t table of size d / 8)

  • x_out – output float vector (float table of size d)

void real_to_binary(size_t d, const float *x_in, uint8_t *x_out)

Convert float vector to binary vector. Components > 0 are converted to 1, others to 0.

Parameters:
  • d – dimension of the vector (multiple of 8)

  • x_in – input float vector (float table of size d)

  • x_out – output binary vector (uint8_t table of size d / 8)

uint64_t hash_bytes(const uint8_t *bytes, int64_t n)

A reasonable hashing function

bool check_openmp()

Whether OpenMP annotations were respected.

Variables

FAISS_API HNSWStats hnsw_stats
FAISS_API int product_quantizer_compute_codes_bs
FAISS_API int distance_compute_min_k_reservoir
FAISS_API bool simd_result_handlers_accept_virtual
FAISS_API int index2layer_sa_encode_bs
FAISS_API int index_factory_verbose

set to > 0 to get more logs from index_factory

const int IO_FLAG_SKIP_STORAGE = 1

skip the storage for graph-based indexes

const int IO_FLAG_READ_ONLY = 2
const int IO_FLAG_ONDISK_SAME_DIR = 4
const int IO_FLAG_SKIP_IVF_DATA = 8
const int IO_FLAG_SKIP_PRECOMPUTE_TABLE = 16
const int IO_FLAG_PQ_SKIP_SDC_TABLE = 32
const int IO_FLAG_MMAP = IO_FLAG_SKIP_IVF_DATA | 0x646f0000
FAISS_API IndexBinaryHashStats indexBinaryHash_stats
FAISS_API FastScanStats FastScan_stats
FAISS_API bool check_compatible_for_merge_expensive_check
FAISS_API IndexIVFStats indexIVF_stats
FAISS_API IVFFastScanStats IVFFastScan_stats
FAISS_API size_t precomputed_table_max_bytes
FAISS_API int index_ivfpq_add_core_o_bs
FAISS_API IndexIVFPQStats indexIVFPQ_stats
FAISS_API IndexPQStats indexPQ_stats
FAISS_API int multi_index_quantizer_search_bs
FAISS_API int rowwise_minmax_sa_encode_bs

block size for performing sa_encode and sa_decode

FAISS_API int rowwise_minmax_sa_decode_bs
FAISS_API int distance_compute_blas_threshold
FAISS_API int distance_compute_blas_query_bs
FAISS_API int distance_compute_blas_database_bs
FAISS_API size_t hamming_batch_size
static constexpr uint8_t hamdis_tab_ham_bytes[256] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8}
FAISS_API PartitionStats partition_stats
FAISS_API int bucket_sort_verbose

increase verbosity of the bucket_sort functions

struct AutoTuneCriterion
#include <AutoTune.h>

Evaluation criterion. Returns a performance measure in [0,1], higher is better.

Subclassed by faiss::IntersectionCriterion, faiss::OneRecallAtRCriterion

Public Functions

AutoTuneCriterion(idx_t nq, idx_t nnn)
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

virtual double evaluate(const float *D, const idx_t *I) const = 0

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline virtual ~AutoTuneCriterion()

Public Members

idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct OneRecallAtRCriterion : public faiss::AutoTuneCriterion

Public Functions

OneRecallAtRCriterion(idx_t nq, idx_t R)
virtual double evaluate(const float *D, const idx_t *I) const override

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline ~OneRecallAtRCriterion() override
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

Public Members

idx_t R
idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct IntersectionCriterion : public faiss::AutoTuneCriterion

Public Functions

IntersectionCriterion(idx_t nq, idx_t R)
virtual double evaluate(const float *D, const idx_t *I) const override

Evaluate the criterion.

Parameters:
  • D – size nq * nnn

  • I – size nq * nnn

Returns:

the criterion, between 0 and 1. Larger is better.

inline ~IntersectionCriterion() override
void set_groundtruth(int gt_nnn, const float *gt_D_in, const idx_t *gt_I_in)

Intitializes the gt_D and gt_I vectors. Must be called before evaluating

Parameters:
  • gt_D_in – size nq * gt_nnn

  • gt_I_in – size nq * gt_nnn

Public Members

idx_t R
idx_t nq

nb of queries this criterion is evaluated on

idx_t nnn

nb of NNs that the query should request

idx_t gt_nnn

nb of GT NNs required to evaluate criterion

std::vector<float> gt_D

Ground-truth distances (size nq * gt_nnn)

std::vector<idx_t> gt_I

Ground-truth indexes (size nq * gt_nnn)

struct OperatingPoint
#include <AutoTune.h>

Maintains a list of experimental results. Each operating point is a (perf, t, key) triplet, where higher perf and lower t is better. The key field is an arbitrary identifier for the operating point.

Includes primitives to extract the Pareto-optimal operating points in the (perf, t) space.

Public Members

double perf

performance measure (output of a Criterion)

double t

corresponding execution time (ms)

std::string key

key that identifies this op pt

int64_t cno

integer identifier

struct OperatingPoints

Public Functions

OperatingPoints()
int merge_with(const OperatingPoints &other, const std::string &prefix = "")

add operating points from other to this, with a prefix to the keys

void clear()
bool add(double perf, double t, const std::string &key, size_t cno = 0)

add a performance measure. Return whether it is an optimal point

double t_for_perf(double perf) const

get time required to obtain a given performance measure

void display(bool only_optimal = true) const

easy-to-read output

void all_to_gnuplot(const char *fname) const

output to a format easy to digest by gnuplot

void optimal_to_gnuplot(const char *fname) const

Public Members

std::vector<OperatingPoint> all_pts

all operating points

std::vector<OperatingPoint> optimal_pts

optimal operating points, sorted by perf

struct ParameterRange
#include <AutoTune.h>

possible values of a parameter, sorted from least to most expensive/accurate

Public Members

std::string name
std::vector<double> values
struct ParameterSpace
#include <AutoTune.h>

Uses a-priori knowledge on the Faiss indexes to extract tunable parameters.

Subclassed by faiss::gpu::GpuParameterSpace

Public Functions

ParameterSpace()
size_t n_combinations() const

nb of combinations, = product of values sizes

bool combination_ge(size_t c1, size_t c2) const

returns whether combinations c1 >= c2 in the tuple sense

std::string combination_name(size_t cno) const

get string representation of the combination

void display() const

print a description on stdout

ParameterRange &add_range(const std::string &name)

add a new parameter (or return it if it exists)

virtual void initialize(const Index *index)

initialize with reasonable parameters for the index

void set_index_parameters(Index *index, size_t cno) const

set a combination of parameters on an index

void set_index_parameters(Index *index, const char *param_string) const

set a combination of parameters described by a string

virtual void set_index_parameter(Index *index, const std::string &name, double val) const

set one of the parameters, returns whether setting was successful

void update_bounds(size_t cno, const OperatingPoint &op, double *upper_bound_perf, double *lower_bound_t) const

find an upper bound on the performance and a lower bound on t for configuration cno given another operating point op

void explore(Index *index, size_t nq, const float *xq, const AutoTuneCriterion &crit, OperatingPoints *ops) const

explore operating points

Parameters:
  • index – index to run on

  • xq – query vectors (size nq * index.d)

  • crit – selection criterion

  • ops – resulting operating points

inline virtual ~ParameterSpace()

Public Members

std::vector<ParameterRange> parameter_ranges

all tunable parameters

int verbose

verbosity during exploration

int n_experiments

nb of experiments during optimization (0 = try all combinations)

size_t batchsize

maximum number of queries to submit at a time.

bool thread_over_batches

use multithreading over batches (useful to benchmark independent single-searches)

double min_test_duration

run tests several times until they reach at least this duration (to avoid jittering in MT mode)

struct Cloner
#include <clone_index.h>

Cloner class, useful to override classes with other cloning functions. The cloning function above just calls Cloner::clone_Index.

Subclassed by faiss::gpu::ToCPUCloner, faiss::gpu::ToGpuCloner, faiss::gpu::ToGpuClonerMultiple

Public Functions

virtual VectorTransform *clone_VectorTransform(const VectorTransform*)
virtual Index *clone_Index(const Index*)
virtual IndexIVF *clone_IndexIVF(const IndexIVF*)
inline virtual ~Cloner()
struct ClusteringParameters
#include <Clustering.h>

Class for the clustering parameters. Can be passed to the constructor of the Clustering object.

Subclassed by faiss::Clustering, faiss::ProgressiveDimClusteringParameters

Public Members

int niter = 25

number of clustering iterations

int nredo = 1

redo clustering this many times and keep the clusters with the best objective

bool verbose = false
bool spherical = false

whether to normalize centroids after each iteration (useful for inner product clustering)

bool int_centroids = false

round centroids coordinates to integer after each iteration?

bool update_index = false

re-train index after each iteration?

bool frozen_centroids = false

Use the subset of centroids provided as input and do not change them during iterations

int min_points_per_centroid = 39

If fewer than this number of training vectors per centroid are provided, writes a warning. Note that fewer than 1 point per centroid raises an exception.

int max_points_per_centroid = 256

to limit size of dataset, otherwise the training set is subsampled

int seed = 1234

seed for the random number generator. negative values lead to seeding an internal rng with std::high_resolution_clock.

size_t decode_block_size = 32768

when the training set is encoded, batch size of the codec decoder

bool check_input_data_for_NaNs = true

whether to check for NaNs in an input data

bool use_faster_subsampling = false

Whether to use splitmix64-based random number generator for subsampling, which is faster, but may pick duplicate points.

struct ClusteringIterationStats

Public Members

float obj

objective values (sum of distances reported by index)

double time

seconds for iteration

double time_search

seconds for just search

double imbalance_factor

imbalance factor of iteration

int nsplit

number of cluster splits

struct Clustering : public faiss::ClusteringParameters
#include <Clustering.h>

K-means clustering based on assignment - centroid update iterations

The clustering is based on an Index object that assigns training points to the centroids. Therefore, at each iteration the centroids are added to the index.

On output, the centoids table is set to the latest version of the centroids and they are also added to the index. If the centroids table it is not empty on input, it is also used for initialization.

Subclassed by faiss::Clustering1D

Public Functions

Clustering(int d, int k)
Clustering(int d, int k, const ClusteringParameters &cp)
virtual void train(idx_t n, const float *x, faiss::Index &index, const float *x_weights = nullptr)

run k-means training

Parameters:
  • x – training vectors, size n * d

  • index – index used for assignment

  • x_weights – weight associated to each vector: NULL or size n

void train_encoded(idx_t nx, const uint8_t *x_in, const Index *codec, Index &index, const float *weights = nullptr)

run with encoded vectors

win addition to train()’s parameters takes a codec as parameter to decode the input vectors.

Parameters:

codec – codec used to decode the vectors (nullptr = vectors are in fact floats)

void post_process_centroids()

Post-process the centroids after each centroid update. includes optional L2 normalization and nearest integer rounding

inline virtual ~Clustering()

Public Members

size_t d

dimension of the vectors

size_t k

nb of centroids

std::vector<float> centroids

centroids (k * d) if centroids are set on input to train, they will be used as initialization

std::vector<ClusteringIterationStats> iteration_stats

stats at every iteration of clustering

int niter = 25

number of clustering iterations

int nredo = 1

redo clustering this many times and keep the clusters with the best objective

bool verbose = false
bool spherical = false

whether to normalize centroids after each iteration (useful for inner product clustering)

bool int_centroids = false

round centroids coordinates to integer after each iteration?

bool update_index = false

re-train index after each iteration?

bool frozen_centroids = false

Use the subset of centroids provided as input and do not change them during iterations

int min_points_per_centroid = 39

If fewer than this number of training vectors per centroid are provided, writes a warning. Note that fewer than 1 point per centroid raises an exception.

int max_points_per_centroid = 256

to limit size of dataset, otherwise the training set is subsampled

int seed = 1234

seed for the random number generator. negative values lead to seeding an internal rng with std::high_resolution_clock.

size_t decode_block_size = 32768

when the training set is encoded, batch size of the codec decoder

bool check_input_data_for_NaNs = true

whether to check for NaNs in an input data

bool use_faster_subsampling = false

Whether to use splitmix64-based random number generator for subsampling, which is faster, but may pick duplicate points.

struct Clustering1D : public faiss::Clustering
#include <Clustering.h>

Exact 1D clustering algorithm

Since it does not use an index, it does not overload the train() function

Public Functions

explicit Clustering1D(int k)
Clustering1D(int k, const ClusteringParameters &cp)
void train_exact(idx_t n, const float *x)
inline virtual ~Clustering1D()
virtual void train(idx_t n, const float *x, faiss::Index &index, const float *x_weights = nullptr)

run k-means training

Parameters:
  • x – training vectors, size n * d

  • index – index used for assignment

  • x_weights – weight associated to each vector: NULL or size n

void train_encoded(idx_t nx, const uint8_t *x_in, const Index *codec, Index &index, const float *weights = nullptr)

run with encoded vectors

win addition to train()’s parameters takes a codec as parameter to decode the input vectors.

Parameters:

codec – codec used to decode the vectors (nullptr = vectors are in fact floats)

void post_process_centroids()

Post-process the centroids after each centroid update. includes optional L2 normalization and nearest integer rounding

Public Members

size_t d

dimension of the vectors

size_t k

nb of centroids

std::vector<float> centroids

centroids (k * d) if centroids are set on input to train, they will be used as initialization

std::vector<ClusteringIterationStats> iteration_stats

stats at every iteration of clustering

int niter = 25

number of clustering iterations

int nredo = 1

redo clustering this many times and keep the clusters with the best objective

bool verbose = false
bool spherical = false

whether to normalize centroids after each iteration (useful for inner product clustering)

bool int_centroids = false

round centroids coordinates to integer after each iteration?

bool update_index = false

re-train index after each iteration?

bool frozen_centroids = false

Use the subset of centroids provided as input and do not change them during iterations

int min_points_per_centroid = 39

If fewer than this number of training vectors per centroid are provided, writes a warning. Note that fewer than 1 point per centroid raises an exception.

int max_points_per_centroid = 256

to limit size of dataset, otherwise the training set is subsampled

int seed = 1234

seed for the random number generator. negative values lead to seeding an internal rng with std::high_resolution_clock.

size_t decode_block_size = 32768

when the training set is encoded, batch size of the codec decoder

bool check_input_data_for_NaNs = true

whether to check for NaNs in an input data

bool use_faster_subsampling = false

Whether to use splitmix64-based random number generator for subsampling, which is faster, but may pick duplicate points.

struct ProgressiveDimClusteringParameters : public faiss::ClusteringParameters

Subclassed by faiss::ProgressiveDimClustering

Public Functions

ProgressiveDimClusteringParameters()

Public Members

int progressive_dim_steps

number of incremental steps

bool apply_pca

apply PCA on input

int niter = 25

number of clustering iterations

int nredo = 1

redo clustering this many times and keep the clusters with the best objective

bool verbose = false
bool spherical = false

whether to normalize centroids after each iteration (useful for inner product clustering)

bool int_centroids = false

round centroids coordinates to integer after each iteration?

bool update_index = false

re-train index after each iteration?

bool frozen_centroids = false

Use the subset of centroids provided as input and do not change them during iterations

int min_points_per_centroid = 39

If fewer than this number of training vectors per centroid are provided, writes a warning. Note that fewer than 1 point per centroid raises an exception.

int max_points_per_centroid = 256

to limit size of dataset, otherwise the training set is subsampled

int seed = 1234

seed for the random number generator. negative values lead to seeding an internal rng with std::high_resolution_clock.

size_t decode_block_size = 32768

when the training set is encoded, batch size of the codec decoder

bool check_input_data_for_NaNs = true

whether to check for NaNs in an input data

bool use_faster_subsampling = false

Whether to use splitmix64-based random number generator for subsampling, which is faster, but may pick duplicate points.

struct ProgressiveDimIndexFactory
#include <Clustering.h>

generates an index suitable for clustering when called

Subclassed by faiss::gpu::GpuProgressiveDimIndexFactory

Public Functions

virtual Index *operator()(int dim)

ownership transferred to caller

inline virtual ~ProgressiveDimIndexFactory()
struct ProgressiveDimClustering : public faiss::ProgressiveDimClusteringParameters
#include <Clustering.h>

K-means clustering with progressive dimensions used

The clustering first happens in dim 1, then with exponentially increasing dimension until d (I steps). This is typically applied after a PCA transformation (optional). Reference:

“Improved Residual Vector Quantization for High-dimensional Approximate

Nearest Neighbor Search”

Shicong Liu, Hongtao Lu, Junru Shao, AAAI’15

https://arxiv.org/abs/1509.05195

Public Functions

ProgressiveDimClustering(int d, int k)
ProgressiveDimClustering(int d, int k, const ProgressiveDimClusteringParameters &cp)
void train(idx_t n, const float *x, ProgressiveDimIndexFactory &factory)
inline virtual ~ProgressiveDimClustering()

Public Members

size_t d

dimension of the vectors

size_t k

nb of centroids

std::vector<float> centroids

centroids (k * d)

std::vector<ClusteringIterationStats> iteration_stats

stats at every iteration of clustering

int progressive_dim_steps

number of incremental steps

bool apply_pca

apply PCA on input

int niter = 25

number of clustering iterations

int nredo = 1

redo clustering this many times and keep the clusters with the best objective

bool verbose = false
bool spherical = false

whether to normalize centroids after each iteration (useful for inner product clustering)

bool int_centroids = false

round centroids coordinates to integer after each iteration?

bool update_index = false

re-train index after each iteration?

bool frozen_centroids = false

Use the subset of centroids provided as input and do not change them during iterations

int min_points_per_centroid = 39

If fewer than this number of training vectors per centroid are provided, writes a warning. Note that fewer than 1 point per centroid raises an exception.

int max_points_per_centroid = 256

to limit size of dataset, otherwise the training set is subsampled

int seed = 1234

seed for the random number generator. negative values lead to seeding an internal rng with std::high_resolution_clock.

size_t decode_block_size = 32768

when the training set is encoded, batch size of the codec decoder

bool check_input_data_for_NaNs = true

whether to check for NaNs in an input data

bool use_faster_subsampling = false

Whether to use splitmix64-based random number generator for subsampling, which is faster, but may pick duplicate points.

struct AdditiveQuantizer : public faiss::Quantizer
#include <AdditiveQuantizer.h>

Abstract structure for additive quantizers

Different from the product quantizer in which the decoded vector is the concatenation of M sub-vectors, additive quantizers sum M sub-vectors to get the decoded vector.

Subclassed by faiss::LocalSearchQuantizer, faiss::ProductAdditiveQuantizer, faiss::ResidualQuantizer

Public Types

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

AdditiveQuantizer(size_t d, const std::vector<size_t> &nbits, Search_type_t search_type = ST_decompress)
AdditiveQuantizer()

compute derived values when d, M and nbits have been set

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const = 0

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • centroids – centroids to be added to x, size n * d

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const

Compute inner-product look-up tables. Used in the centroid search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

virtual ~AdditiveQuantizer()
virtual void train(size_t n, const float *x) = 0

Train the quantizer

Parameters:

x – training vectors, size n * d

Public Members

size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct RangeSearchResult
#include <AuxIndexStructures.h>

The objective is to have a simple result structure while minimizing the number of mem copies in the result. The method do_allocation can be overloaded to allocate the result tables in the matrix type of a scripting language like Lua or Python.

Public Functions

explicit RangeSearchResult(size_t nq, bool alloc_lims = true)

lims must be allocated on input to range_search.

virtual void do_allocation()

called when lims contains the nb of elements result entries for each query

virtual ~RangeSearchResult()

Public Members

size_t nq

nb of queries

size_t *lims

size (nq + 1)

idx_t *labels

result for query i is labels[lims[i]:lims[i+1]]

float *distances

corresponding distances (not sorted)

size_t buffer_size

size of the result buffers used

struct BufferList
#include <AuxIndexStructures.h>

List of temporary buffers used to store results before they are copied to the RangeSearchResult object.

Subclassed by faiss::RangeSearchPartialResult

Public Functions

explicit BufferList(size_t buffer_size)
~BufferList()
void append_buffer()

create a new buffer

void add(idx_t id, float dis)

add one result, possibly appending a new buffer if needed

void copy_range(size_t ofs, size_t n, idx_t *dest_ids, float *dest_dis)

copy elemnts ofs:ofs+n-1 seen as linear data in the buffers to tables dest_ids, dest_dis

Public Members

size_t buffer_size
std::vector<Buffer> buffers
size_t wp

write pointer in the last buffer.

struct Buffer

Public Members

idx_t *ids
float *dis
struct RangeQueryResult
#include <AuxIndexStructures.h>

result structure for a single query

Public Functions

void add(float dis, idx_t id)

called by search function to report a new result

Public Members

idx_t qno
size_t nres
RangeSearchPartialResult *pres
struct RangeSearchPartialResult : public faiss::BufferList
#include <AuxIndexStructures.h>

the entries in the buffers are split per query

Public Functions

explicit RangeSearchPartialResult(RangeSearchResult *res_in)

eventually the result will be stored in res_in

RangeQueryResult &new_result(idx_t qno)

begin a new result

void finalize()
void set_lims()

called by range_search before do_allocation

void copy_result(bool incremental = false)

called by range_search after do_allocation

void append_buffer()

create a new buffer

void add(idx_t id, float dis)

add one result, possibly appending a new buffer if needed

void copy_range(size_t ofs, size_t n, idx_t *dest_ids, float *dest_dis)

copy elemnts ofs:ofs+n-1 seen as linear data in the buffers to tables dest_ids, dest_dis

Public Members

RangeSearchResult *res
std::vector<RangeQueryResult> queries

query ids + nb of results per query.

size_t buffer_size
std::vector<Buffer> buffers
size_t wp

write pointer in the last buffer.

Public Static Functions

static void merge(std::vector<RangeSearchPartialResult*> &partial_results, bool do_delete = true)

merge a set of PartialResult’s into one RangeSearchResult on output the partialresults are empty!

struct InterruptCallback

Subclassed by faiss::TimeoutCallback

Public Functions

virtual bool want_interrupt() = 0
inline virtual ~InterruptCallback()

Public Static Functions

static void clear_instance()
static void check()

check if:

  • an interrupt callback is set

  • the callback returns true if this is the case, then throw an exception. Should not be called from multiple threads.

static bool is_interrupted()

same as check() but return true if is interrupted instead of throwing. Can be called from multiple threads.

static size_t get_period_hint(size_t flops)

assuming each iteration takes a certain number of flops, what is a reasonable interval to check for interrupts?

Public Static Attributes

static std::mutex lock
static std::unique_ptr<InterruptCallback> instance
struct TimeoutCallback : public faiss::InterruptCallback

Public Functions

virtual bool want_interrupt() override
void set_timeout(double timeout_in_seconds)

Public Members

std::chrono::time_point<std::chrono::steady_clock> start
double timeout

Public Static Functions

static void reset(double timeout_in_seconds)
static void clear_instance()
static void check()

check if:

  • an interrupt callback is set

  • the callback returns true if this is the case, then throw an exception. Should not be called from multiple threads.

static bool is_interrupted()

same as check() but return true if is interrupted instead of throwing. Can be called from multiple threads.

static size_t get_period_hint(size_t flops)

assuming each iteration takes a certain number of flops, what is a reasonable interval to check for interrupts?

Public Static Attributes

static std::mutex lock
static std::unique_ptr<InterruptCallback> instance
struct VisitedTable
#include <AuxIndexStructures.h>

set implementation optimized for fast access.

Public Functions

inline explicit VisitedTable(int size)
inline void set(int no)

set flag #no to true

inline bool get(int no) const

get flag #no

inline void advance()

reset all flags to false

Public Members

std::vector<uint8_t> visited
uint8_t visno
struct CodePacker
#include <CodePacker.h>

Packing consists in combining a fixed number of codes of constant size (code_size) into a block of data where they may (or may not) be interleaved for efficient consumption by distance computation kernels. This exists for the “fast_scan” indexes on CPU and for some GPU kernels.

Subclassed by faiss::CodePackerFlat, faiss::CodePackerPQ4

Public Functions

virtual void pack_1(const uint8_t *flat_code, size_t offset, uint8_t *block) const = 0
virtual void unpack_1(const uint8_t *block, size_t offset, uint8_t *flat_code) const = 0
virtual void pack_all(const uint8_t *flat_codes, uint8_t *block) const
virtual void unpack_all(const uint8_t *block, uint8_t *flat_codes) const
inline virtual ~CodePacker()

Public Members

size_t code_size
size_t nvec
size_t block_size
struct CodePackerFlat : public faiss::CodePacker
#include <CodePacker.h>

Trivial code packer where codes are stored one by one

Public Functions

explicit CodePackerFlat(size_t code_size)
virtual void pack_1(const uint8_t *flat_code, size_t offset, uint8_t *block) const final
virtual void unpack_1(const uint8_t *block, size_t offset, uint8_t *flat_code) const final
virtual void pack_all(const uint8_t *flat_codes, uint8_t *block) const final
virtual void unpack_all(const uint8_t *block, uint8_t *flat_codes) const final

Public Members

size_t code_size
size_t nvec
size_t block_size
struct DistanceComputer

Subclassed by faiss::FlatCodesDistanceComputer, faiss::NegativeDistanceComputer

Public Functions

virtual void set_query(const float *x) = 0

called before computing distances. Pointer x should remain valid while operator () is called

virtual float operator()(idx_t i) = 0

compute distance of vector i to current query

inline virtual void distances_batch_4(const idx_t idx0, const idx_t idx1, const idx_t idx2, const idx_t idx3, float &dis0, float &dis1, float &dis2, float &dis3)

compute distances of current query to 4 stored vectors. certain DistanceComputer implementations may benefit heavily from this.

virtual float symmetric_dis(idx_t i, idx_t j) = 0

compute distance between two stored vectors

inline virtual ~DistanceComputer()
struct NegativeDistanceComputer : public faiss::DistanceComputer

Public Functions

inline explicit NegativeDistanceComputer(DistanceComputer *basedis)
inline virtual void set_query(const float *x) override

called before computing distances. Pointer x should remain valid while operator () is called

inline virtual float operator()(idx_t i) override

compute distance of vector i to current query

inline virtual void distances_batch_4(const idx_t idx0, const idx_t idx1, const idx_t idx2, const idx_t idx3, float &dis0, float &dis1, float &dis2, float &dis3) override

compute distances of current query to 4 stored vectors. certain DistanceComputer implementations may benefit heavily from this.

inline virtual float symmetric_dis(idx_t i, idx_t j) override

compute distance between two stored vectors

inline virtual ~NegativeDistanceComputer()

Public Members

DistanceComputer *basedis

owned by this

struct FlatCodesDistanceComputer : public faiss::DistanceComputer

Subclassed by faiss::ScalarQuantizer::SQDistanceComputer

Public Functions

inline FlatCodesDistanceComputer(const uint8_t *codes, size_t code_size)
inline FlatCodesDistanceComputer()
inline virtual float operator()(idx_t i) override

compute distance of vector i to current query

virtual float distance_to_code(const uint8_t *code) = 0

compute distance of current query to an encoded vector

inline virtual ~FlatCodesDistanceComputer()
virtual void set_query(const float *x) = 0

called before computing distances. Pointer x should remain valid while operator () is called

inline virtual void distances_batch_4(const idx_t idx0, const idx_t idx1, const idx_t idx2, const idx_t idx3, float &dis0, float &dis1, float &dis2, float &dis3)

compute distances of current query to 4 stored vectors. certain DistanceComputer implementations may benefit heavily from this.

virtual float symmetric_dis(idx_t i, idx_t j) = 0

compute distance between two stored vectors

Public Members

const uint8_t *codes
size_t code_size
class FaissException : public std::exception
#include <FaissException.h>

Base class for Faiss exceptions.

Public Functions

explicit FaissException(const std::string &msg)
FaissException(const std::string &msg, const char *funcName, const char *file, int line)
const char *what() const noexcept override

from std::exception

Public Members

std::string msg
struct TransformedVectors
#include <FaissException.h>

RAII object for a set of possibly transformed vectors (deallocated only if they are indeed transformed)

Public Functions

inline TransformedVectors(const float *x_orig, const float *x)
inline ~TransformedVectors()

Public Members

const float *x
bool own_x
template<class C>
struct ResultHandler

Subclassed by faiss::HeapBlockResultHandler< C, use_sel >::SingleResultHandler, faiss::RangeSearchBlockResultHandler< C, use_sel >::SingleResultHandler, faiss::ReservoirTopN< C >, faiss::Top1BlockResultHandler< C, use_sel >::SingleResultHandler

Public Functions

virtual bool add_result(typename C::T dis, typename C::TI idx) = 0
inline virtual ~ResultHandler()

Public Members

C::T threshold = C::neutral()
struct SearchParametersHNSW : public faiss::SearchParameters

Public Functions

inline ~SearchParametersHNSW()

Public Members

int efSearch = 16
bool check_relative_distance = true
bool bounded_queue = true
IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct HNSW

Public Types

using storage_idx_t = int32_t

internal storage of vectors (32 bits: this is expensive)

using C = CMax<float, int64_t>
typedef std::pair<float, storage_idx_t> Node

Public Functions

void set_default_probas(int M, float levelMult)

initialize the assign_probas and cum_nneighbor_per_level to have 2*M links on level 0 and M links on levels > 0

void set_nb_neighbors(int level_no, int n)

set nb of neighbors for this level (before adding anything)

int nb_neighbors(int layer_no) const

nb of neighbors for this level

int cum_nb_neighbors(int layer_no) const

cumumlative nb up to (and excluding) this level

void neighbor_range(idx_t no, int layer_no, size_t *begin, size_t *end) const

range of entries in the neighbors table of vertex no at layer_no

explicit HNSW(int M = 32)

only mandatory parameter: nb of neighbors

int random_level()

pick a random level for a new point

void fill_with_random_links(size_t n)

add n random levels to table (for debugging…)

void add_with_locks(DistanceComputer &ptdis, int pt_level, int pt_id, std::vector<omp_lock_t> &locks, VisitedTable &vt, bool keep_max_size_level0 = false)

add point pt_id on all levels <= pt_level and build the link structure for them.

HNSWStats search(DistanceComputer &qdis, ResultHandler<C> &res, VisitedTable &vt, const SearchParametersHNSW *params = nullptr) const

search interface for 1 point, single thread

void search_level_0(DistanceComputer &qdis, ResultHandler<C> &res, idx_t nprobe, const storage_idx_t *nearest_i, const float *nearest_d, int search_type, HNSWStats &search_stats, VisitedTable &vt, const SearchParametersHNSW *params = nullptr) const

search only in level 0 from a given vertex

void reset()
void clear_neighbor_tables(int level)
void print_neighbor_stats(int level) const
int prepare_level_tab(size_t n, bool preset_levels = false)
void permute_entries(const idx_t *map)

Public Members

std::vector<double> assign_probas

assignment probability to each layer (sum=1)

std::vector<int> cum_nneighbor_per_level

number of neighbors stored per layer (cumulative), should not be changed after first add

std::vector<int> levels

level of each vector (base level = 1), size = ntotal

std::vector<size_t> offsets

offsets[i] is the offset in the neighbors array where vector i is stored size ntotal + 1

std::vector<storage_idx_t> neighbors

neighbors[offsets[i]:offsets[i+1]] is the list of neighbors of vector i for all levels. this is where all storage goes.

storage_idx_t entry_point = -1

entry point in the search structure (one of the points with maximum level

faiss::RandomGenerator rng
int max_level = -1

maximum level

int efConstruction = 40

expansion factor at construction time

int efSearch = 16

expansion factor at search time

bool check_relative_distance = true

during search: do we check whether the next best distance is good enough?

bool search_bounded_queue = true

use bounded queue during exploration

Public Static Functions

static void shrink_neighbor_list(DistanceComputer &qdis, std::priority_queue<NodeDistFarther> &input, std::vector<NodeDistFarther> &output, int max_size, bool keep_max_size_level0 = false)
struct MinimaxHeap
#include <HNSW.h>

Heap structure that allows fast

Public Types

typedef faiss::CMax<float, storage_idx_t> HC

Public Functions

inline explicit MinimaxHeap(int n)
void push(storage_idx_t i, float v)
float max() const
int size() const
void clear()
int pop_min(float *vmin_out = nullptr)
int count_below(float thresh)

Public Members

int n
int k
int nvalid
std::vector<storage_idx_t> ids
std::vector<float> dis
struct NodeDistCloser
#include <HNSW.h>

to sort pairs of (id, distance) from nearest to fathest or the reverse

Public Functions

inline NodeDistCloser(float d, int id)
inline bool operator<(const NodeDistCloser &obj1) const

Public Members

float d
int id
struct NodeDistFarther

Public Functions

inline NodeDistFarther(float d, int id)
inline bool operator<(const NodeDistFarther &obj1) const

Public Members

float d
int id
struct HNSWStats

Public Functions

inline void reset()

number of hops aka number of edges traversed

inline void combine(const HNSWStats &other)

Public Members

size_t n1 = 0
size_t n2 = 0

number of vectors searched

size_t ndis = 0

number of queries for which the candidate list is exhausted

size_t nhops = 0

number of distances computed

struct IDSelector
#include <IDSelector.h>

Encapsulates a set of ids to handle.

Subclassed by PyCallbackIDSelector, faiss::IDSelectorAll, faiss::IDSelectorAnd, faiss::IDSelectorArray, faiss::IDSelectorBatch, faiss::IDSelectorBitmap, faiss::IDSelectorNot, faiss::IDSelectorOr, faiss::IDSelectorRange, faiss::IDSelectorTranslated, faiss::IDSelectorXOr

Public Functions

virtual bool is_member(idx_t id) const = 0
inline virtual ~IDSelector()
struct IDSelectorRange : public faiss::IDSelector
#include <IDSelector.h>

ids between [imin, imax)

Public Functions

IDSelectorRange(idx_t imin, idx_t imax, bool assume_sorted = false)
virtual bool is_member(idx_t id) const final
void find_sorted_ids_bounds(size_t list_size, const idx_t *ids, size_t *jmin, size_t *jmax) const

for sorted ids, find the range of list indices where the valid ids are stored

inline ~IDSelectorRange() override

Public Members

idx_t imin
idx_t imax
bool assume_sorted

Assume that the ids to handle are sorted. In some cases this can speed up processing

struct IDSelectorArray : public faiss::IDSelector
#include <IDSelector.h>

Simple array of elements

is_member calls are very inefficient, but some operations can use the ids directly.

Public Functions

IDSelectorArray(size_t n, const idx_t *ids)

Construct with an array of ids to process

Parameters:
  • n – number of ids to store

  • ids – elements to store. The pointer should remain valid during IDSelectorArray’s lifetime

virtual bool is_member(idx_t id) const final
inline ~IDSelectorArray() override

Public Members

size_t n
const idx_t *ids
struct IDSelectorBatch : public faiss::IDSelector
#include <IDSelector.h>

Ids from a set.

Repetitions of ids in the indices set passed to the constructor does not hurt performance.

The hash function used for the bloom filter and GCC’s implementation of unordered_set are just the least significant bits of the id. This works fine for random ids or ids in sequences but will produce many hash collisions if lsb’s are always the same

Public Functions

IDSelectorBatch(size_t n, const idx_t *indices)

Construct with an array of ids to process

Parameters:
  • n – number of ids to store

  • ids – elements to store. The pointer can be released after construction

virtual bool is_member(idx_t id) const final
inline ~IDSelectorBatch() override

Public Members

std::unordered_set<idx_t> set
std::vector<uint8_t> bloom
int nbits
idx_t mask
struct IDSelectorBitmap : public faiss::IDSelector
#include <IDSelector.h>

One bit per element. Constructed with a bitmap, size ceil(n / 8).

Public Functions

IDSelectorBitmap(size_t n, const uint8_t *bitmap)

Construct with a binary mask

Parameters:
  • n – size of the bitmap array

  • bitmap – id will be selected iff id / 8 < n and bit number (i%8) of bitmap[floor(i / 8)] is 1.

virtual bool is_member(idx_t id) const final
inline ~IDSelectorBitmap() override

Public Members

size_t n
const uint8_t *bitmap
struct IDSelectorNot : public faiss::IDSelector
#include <IDSelector.h>

reverts the membership test of another selector

Public Functions

inline IDSelectorNot(const IDSelector *sel)
inline virtual bool is_member(idx_t id) const final
inline virtual ~IDSelectorNot()

Public Members

const IDSelector *sel
struct IDSelectorAll : public faiss::IDSelector
#include <IDSelector.h>

selects all entries (useful for benchmarking)

Public Functions

inline virtual bool is_member(idx_t id) const final
inline virtual ~IDSelectorAll()
struct IDSelectorAnd : public faiss::IDSelector
#include <IDSelector.h>

does an AND operation on the the two given IDSelector’s is_membership results.

Public Functions

inline IDSelectorAnd(const IDSelector *lhs, const IDSelector *rhs)
inline virtual bool is_member(idx_t id) const final
inline virtual ~IDSelectorAnd()

Public Members

const IDSelector *lhs
const IDSelector *rhs
struct IDSelectorOr : public faiss::IDSelector
#include <IDSelector.h>

does an OR operation on the the two given IDSelector’s is_membership results.

Public Functions

inline IDSelectorOr(const IDSelector *lhs, const IDSelector *rhs)
inline virtual bool is_member(idx_t id) const final
inline virtual ~IDSelectorOr()

Public Members

const IDSelector *lhs
const IDSelector *rhs
struct IDSelectorXOr : public faiss::IDSelector
#include <IDSelector.h>

does an XOR operation on the the two given IDSelector’s is_membership results.

Public Functions

inline IDSelectorXOr(const IDSelector *lhs, const IDSelector *rhs)
inline virtual bool is_member(idx_t id) const final
inline virtual ~IDSelectorXOr()

Public Members

const IDSelector *lhs
const IDSelector *rhs
struct IOReader

Subclassed by PyCallbackIOReader, faiss::BufferedIOReader, faiss::FileIOReader, faiss::VectorIOReader

Public Functions

virtual size_t operator()(void *ptr, size_t size, size_t nitems) = 0
virtual int filedescriptor()
inline virtual ~IOReader()

Public Members

std::string name
struct IOWriter

Subclassed by PyCallbackIOWriter, faiss::BufferedIOWriter, faiss::FileIOWriter, faiss::VectorIOWriter

Public Functions

virtual size_t operator()(const void *ptr, size_t size, size_t nitems) = 0
virtual int filedescriptor()
inline virtual ~IOWriter() noexcept(false)

Public Members

std::string name
struct VectorIOReader : public faiss::IOReader

Public Functions

virtual size_t operator()(void *ptr, size_t size, size_t nitems) override
virtual int filedescriptor()

Public Members

std::vector<uint8_t> data
size_t rp = 0
std::string name
struct VectorIOWriter : public faiss::IOWriter

Public Functions

virtual size_t operator()(const void *ptr, size_t size, size_t nitems) override
virtual int filedescriptor()

Public Members

std::vector<uint8_t> data
std::string name
struct FileIOReader : public faiss::IOReader

Public Functions

FileIOReader(FILE *rf)
FileIOReader(const char *fname)
~FileIOReader() override
virtual size_t operator()(void *ptr, size_t size, size_t nitems) override
virtual int filedescriptor() override

Public Members

FILE *f = nullptr
bool need_close = false
std::string name
struct FileIOWriter : public faiss::IOWriter

Public Functions

FileIOWriter(FILE *wf)
FileIOWriter(const char *fname)
~FileIOWriter() override
virtual size_t operator()(const void *ptr, size_t size, size_t nitems) override
virtual int filedescriptor() override

Public Members

FILE *f = nullptr
bool need_close = false
std::string name
struct BufferedIOReader : public faiss::IOReader
#include <io.h>

wraps an ioreader to make buffered reads to avoid too small reads

Public Functions

explicit BufferedIOReader(IOReader *reader, size_t bsz = 1024 * 1024)
Parameters:

bsz – buffer size (bytes). Reads will be done by batched of this size

virtual size_t operator()(void *ptr, size_t size, size_t nitems) override
virtual int filedescriptor()

Public Members

IOReader *reader
size_t bsz
size_t ofs

offset in input stream

size_t ofs2

number of bytes returned to caller

size_t b0
size_t b1

range of available bytes in the buffer

std::vector<char> buffer
std::string name
struct BufferedIOWriter : public faiss::IOWriter

Public Functions

explicit BufferedIOWriter(IOWriter *writer, size_t bsz = 1024 * 1024)
virtual size_t operator()(const void *ptr, size_t size, size_t nitems) override
~BufferedIOWriter() override
virtual int filedescriptor()

Public Members

IOWriter *writer
size_t bsz
size_t ofs
size_t ofs2

number of bytes received from caller

size_t b0

amount of data in buffer

std::vector<char> buffer
std::string name
struct ZnSphereSearch
#include <lattice_Zn.h>

returns the nearest vertex in the sphere to a query. Returns only the coordinates, not an id.

Algorithm: all points are derived from a one atom vector up to a permutation and sign changes. The search function finds the most appropriate atom and transformation.

Subclassed by faiss::ZnSphereCodec

Public Functions

ZnSphereSearch(int dim, int r2)
float search(const float *x, float *c) const

find nearest centroid. x does not need to be normalized

float search(const float *x, float *c, float *tmp, int *tmp_int, int *ibest_out = nullptr) const

full call. Requires externally-allocated temp space

void search_multi(int n, const float *x, float *c_out, float *dp_out)

Public Members

int dimS
int r2
int natom
std::vector<float> voc

size dim * ntatom

struct EnumeratedVectors

Subclassed by faiss::ZnSphereCodec, faiss::ZnSphereCodecRec

Public Functions

inline explicit EnumeratedVectors(int dim)
virtual uint64_t encode(const float *x) const = 0

encode a vector from a collection

virtual void decode(uint64_t code, float *c) const = 0

decode it

void encode_multi(size_t nc, const float *c, uint64_t *codes) const
void decode_multi(size_t nc, const uint64_t *codes, float *c) const
void find_nn(size_t n, const uint64_t *codes, size_t nq, const float *xq, int64_t *idx, float *dis)
inline virtual ~EnumeratedVectors()

Public Members

uint64_t nv

size of the collection

int dim
struct Repeat

Public Members

float val
int n
struct Repeats
#include <lattice_Zn.h>

Repeats: used to encode a vector that has n occurrences of val. Encodes the signs and permutation of the vector. Useful for atoms.

Subclassed by faiss::ZnSphereCodec::CodeSegment

Public Functions

Repeats(int dim = 0, const float *c = nullptr)
uint64_t count() const
uint64_t encode(const float *c) const
void decode(uint64_t code, float *c) const

Public Members

int dim
std::vector<Repeat> repeats
struct ZnSphereCodec : public faiss::ZnSphereSearch, public faiss::EnumeratedVectors
#include <lattice_Zn.h>

codec that can return ids for the encoded vectors

uses the ZnSphereSearch to encode the vector by encoding the permutation and signs. Depends on ZnSphereSearch because it uses the atom numbers

Subclassed by faiss::ZnSphereCodecAlt

Public Functions

ZnSphereCodec(int dim, int r2)
uint64_t search_and_encode(const float *x) const
virtual void decode(uint64_t code, float *c) const override

decode it

virtual uint64_t encode(const float *x) const override

takes vectors that do not need to be centroids

float search(const float *x, float *c) const

find nearest centroid. x does not need to be normalized

float search(const float *x, float *c, float *tmp, int *tmp_int, int *ibest_out = nullptr) const

full call. Requires externally-allocated temp space

void search_multi(int n, const float *x, float *c_out, float *dp_out)
void encode_multi(size_t nc, const float *c, uint64_t *codes) const
void decode_multi(size_t nc, const uint64_t *codes, float *c) const
void find_nn(size_t n, const uint64_t *codes, size_t nq, const float *xq, int64_t *idx, float *dis)

Public Members

std::vector<CodeSegment> code_segments
uint64_t nv
size_t code_size
int dimS
int r2
int natom
std::vector<float> voc

size dim * ntatom

int dim
struct CodeSegment : public faiss::Repeats

Public Functions

inline explicit CodeSegment(const Repeats &r)
uint64_t count() const
uint64_t encode(const float *c) const
void decode(uint64_t code, float *c) const

Public Members

uint64_t c0
int signbits
int dim
std::vector<Repeat> repeats
struct ZnSphereCodecRec : public faiss::EnumeratedVectors
#include <lattice_Zn.h>

recursive sphere codec

Uses a recursive decomposition on the dimensions to encode centroids found by the ZnSphereSearch. The codes are not compatible with the ones of ZnSpehreCodec

Public Functions

ZnSphereCodecRec(int dim, int r2)
uint64_t encode_centroid(const float *c) const
virtual void decode(uint64_t code, float *c) const override

decode it

virtual uint64_t encode(const float *x) const override

vectors need to be centroids (does not work on arbitrary vectors)

uint64_t get_nv(int ld, int r2a) const
uint64_t get_nv_cum(int ld, int r2t, int r2a) const
void set_nv_cum(int ld, int r2t, int r2a, uint64_t v)
void encode_multi(size_t nc, const float *c, uint64_t *codes) const
void decode_multi(size_t nc, const uint64_t *codes, float *c) const
void find_nn(size_t n, const uint64_t *codes, size_t nq, const float *xq, int64_t *idx, float *dis)

Public Members

int r2
int log2_dim
int code_size
std::vector<uint64_t> all_nv
std::vector<uint64_t> all_nv_cum
int decode_cache_ld
std::vector<std::vector<float>> decode_cache
uint64_t nv

size of the collection

int dim
struct ZnSphereCodecAlt : public faiss::ZnSphereCodec
#include <lattice_Zn.h>

Codec that uses the recursive codec if dim is a power of 2 and the regular one otherwise

Public Functions

ZnSphereCodecAlt(int dim, int r2)
virtual uint64_t encode(const float *x) const override

takes vectors that do not need to be centroids

virtual void decode(uint64_t code, float *c) const override

decode it

uint64_t search_and_encode(const float *x) const
float search(const float *x, float *c) const

find nearest centroid. x does not need to be normalized

float search(const float *x, float *c, float *tmp, int *tmp_int, int *ibest_out = nullptr) const

full call. Requires externally-allocated temp space

void search_multi(int n, const float *x, float *c_out, float *dp_out)
void encode_multi(size_t nc, const float *c, uint64_t *codes) const
void decode_multi(size_t nc, const uint64_t *codes, float *c) const
void find_nn(size_t n, const uint64_t *codes, size_t nq, const float *xq, int64_t *idx, float *dis)

Public Members

bool use_rec
ZnSphereCodecRec znc_rec
std::vector<CodeSegment> code_segments
uint64_t nv
size_t code_size
int dimS
int r2
int natom
std::vector<float> voc

size dim * ntatom

int dim
struct LocalSearchQuantizer : public faiss::AdditiveQuantizer
#include <LocalSearchQuantizer.h>

Implementation of LSQ/LSQ++ described in the following two papers:

Revisiting additive quantization Julieta Martinez, et al. ECCV 2016

LSQ++: Lower running time and higher recall in multi-codebook quantization Julieta Martinez, et al. ECCV 2018

This implementation is mostly translated from the Julia implementations by Julieta Martinez: (https://github.com/una-dinosauria/local-search-quantization, https://github.com/una-dinosauria/Rayuela.jl)

The trained codes are stored in codebooks which is called centroids in PQ and RQ.

Public Types

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

LocalSearchQuantizer(size_t d, size_t M, size_t nbits, Search_type_t search_type = ST_decompress)
LocalSearchQuantizer()
~LocalSearchQuantizer() override
virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • n – number of vectors

  • centroids – centroids to be added to x, size n * d

void update_codebooks(const float *x, const int32_t *codes, size_t n)

Update codebooks given encodings

Parameters:
  • x – training vectors, size n * d

  • codes – encoded training vectors, size n * M

  • n – number of vectors

void icm_encode(int32_t *codes, const float *x, size_t n, size_t ils_iters, std::mt19937 &gen) const

Encode vectors given codebooks using iterative conditional mode (icm).

Parameters:
  • codes – output codes, size n * M

  • x – vectors to encode, size n * d

  • n – number of vectors

  • ils_iters – number of iterations of iterative local search

void icm_encode_impl(int32_t *codes, const float *x, const float *unaries, std::mt19937 &gen, size_t n, size_t ils_iters, bool verbose) const
void icm_encode_step(int32_t *codes, const float *unaries, const float *binaries, size_t n, size_t n_iters) const
void perturb_codes(int32_t *codes, size_t n, std::mt19937 &gen) const

Add some perturbation to codes

Parameters:
  • codes – codes to be perturbed, size n * M

  • n – number of vectors

void perturb_codebooks(float T, const std::vector<float> &stddev, std::mt19937 &gen)

Add some perturbation to codebooks

Parameters:
  • T – temperature of simulated annealing

  • stddev – standard derivations of each dimension in training data

void compute_binary_terms(float *binaries) const

Compute binary terms

Parameters:

binaries – binary terms, size M * M * K * K

void compute_unary_terms(const float *x, float *unaries, size_t n) const

Compute unary terms

Parameters:
  • n – number of vectors

  • x – vectors to encode, size n * d

  • unaries – unary terms, size n * M * K

float evaluate(const int32_t *codes, const float *x, size_t n, float *objs = nullptr) const

Helper function to compute reconstruction error

Parameters:
  • codes – encoded codes, size n * M

  • x – vectors to encode, size n * d

  • n – number of vectors

  • objs – if it is not null, store reconstruction error of each vector into it, size n

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const

Compute inner-product look-up tables. Used in the centroid search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

Public Members

size_t K

number of codes per codebook

size_t train_iters = 25

number of iterations in training

size_t encode_ils_iters = 16

iterations of local search in encoding

size_t train_ils_iters = 8

iterations of local search in training

size_t icm_iters = 4

number of iterations in icm

float p = 0.5f

temperature factor

float lambd = 1e-2f

regularization factor

size_t chunk_size = 10000

nb of vectors to encode at a time

int random_seed = 0x12345

seed for random generator

size_t nperts = 4

number of perturbation in each code

if non-NULL, use this encoder to encode (owned by the object)

lsq::IcmEncoderFactory *icm_encoder_factory = nullptr
bool update_codebooks_with_double = true
size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct DummyScaler
#include <LookupTableScaler.h>

no-op handler

Public Functions

inline simd32uint8 lookup(const simd32uint8&, const simd32uint8&) const
inline simd16uint16 scale_lo(const simd32uint8&) const
inline simd16uint16 scale_hi(const simd32uint8&) const
template<class dist_t>
inline dist_t scale_one(const dist_t&) const

Public Static Attributes

static constexpr int nscale = 0
struct NormTableScaler
#include <LookupTableScaler.h>

consumes 2x4 bits to encode a norm as a scalar additive quantizer the norm is scaled because its range if larger than other components

Public Functions

inline explicit NormTableScaler(int scale)
inline simd32uint8 lookup(const simd32uint8 &lut, const simd32uint8 &c) const
inline simd16uint16 scale_lo(const simd32uint8 &res) const
inline simd16uint16 scale_hi(const simd32uint8 &res) const
template<class dist_t>
inline dist_t scale_one(const dist_t &x) const

Public Members

int scale_int
simd16uint16 scale_simd

Public Static Attributes

static constexpr int nscale = 2
struct NNDescent

Public Types

using storage_idx_t = int
using KNNGraph = std::vector<nndescent::Nhood>

Public Functions

explicit NNDescent(const int d, const int K)
~NNDescent()
void build(DistanceComputer &qdis, const int n, bool verbose)
void search(DistanceComputer &qdis, const int topk, idx_t *indices, float *dists, VisitedTable &vt) const
void reset()
void init_graph(DistanceComputer &qdis)

Initialize the KNN graph randomly.

void nndescent(DistanceComputer &qdis, bool verbose)

Perform NNDescent algorithm.

void join(DistanceComputer &qdis)

Perform local join on each node.

void update()

Sample new neighbors for each node to peform local join later.

void generate_eval_set(DistanceComputer &qdis, std::vector<int> &c, std::vector<std::vector<int>> &v, int N)

Sample a small number of points to evaluate the quality of KNNG built.

float eval_recall(std::vector<int> &ctrl_points, std::vector<std::vector<int>> &acc_eval_set)

Evaluate the quality of KNNG built.

Public Members

bool has_built = false
int S = 10
int R = 100
int iter = 10
int search_L = 0
int random_seed = 2021
int K
int d
int L
int ntotal = 0
KNNGraph graph
std::vector<int> final_graph
struct NSG

Public Types

using storage_idx_t = int32_t

internal storage of vectors (32 bits: this is expensive)

using Node = nsg::Node
using Neighbor = nsg::Neighbor

Public Functions

explicit NSG(int R = 32)
void build(Index *storage, idx_t n, const nsg::Graph<idx_t> &knn_graph, bool verbose)
void reset()
void search(DistanceComputer &dis, int k, idx_t *I, float *D, VisitedTable &vt) const
void init_graph(Index *storage, const nsg::Graph<idx_t> &knn_graph)
template<bool collect_fullset, class index_t>
void search_on_graph(const nsg::Graph<index_t> &graph, DistanceComputer &dis, VisitedTable &vt, int ep, int pool_size, std::vector<Neighbor> &retset, std::vector<Node> &fullset) const
void add_reverse_links(int q, std::vector<std::mutex> &locks, DistanceComputer &dis, nsg::Graph<Node> &graph)
void sync_prune(int q, std::vector<Node> &pool, DistanceComputer &dis, VisitedTable &vt, const nsg::Graph<idx_t> &knn_graph, nsg::Graph<Node> &graph)
void link(Index *storage, const nsg::Graph<idx_t> &knn_graph, nsg::Graph<Node> &graph, bool verbose)
int tree_grow(Index *storage, std::vector<int> &degrees)
int dfs(VisitedTable &vt, int root, int cnt) const
int attach_unlinked(Index *storage, VisitedTable &vt, VisitedTable &vt2, std::vector<int> &degrees)
void check_graph() const

Public Members

int ntotal = 0

nb of nodes

int R

nb of neighbors per node

int L

length of the search path at construction time

int C

candidate pool size at construction time

int search_L = 16

length of the search path

int enterpoint

enterpoint

std::shared_ptr<nsg::Graph<int32_t>> final_graph

NSG graph structure.

bool is_built = false

NSG is built or not.

RandomGenerator rng

random generator

struct SimulatedAnnealingParameters
#include <PolysemousTraining.h>

parameters used for the simulated annealing method

Subclassed by faiss::PolysemousTraining, faiss::SimulatedAnnealingOptimizer

Public Functions

inline SimulatedAnnealingParameters()

Public Members

double init_temperature = 0.7
double temperature_decay = 0.9997893011688015
int n_iter = 500000
int n_redo = 2
int seed = 123
int verbose = 0
bool only_bit_flips = false
bool init_random = false
struct PermutationObjective
#include <PolysemousTraining.h>

abstract class for the loss function

Subclassed by faiss::ReproduceDistancesObjective

Public Functions

virtual double compute_cost(const int *perm) const = 0
virtual double cost_update(const int *perm, int iw, int jw) const
inline virtual ~PermutationObjective()

Public Members

int n
struct ReproduceDistancesObjective : public faiss::PermutationObjective

Public Functions

double dis_weight(double x) const
double get_source_dis(int i, int j) const
virtual double compute_cost(const int *perm) const override
virtual double cost_update(const int *perm, int iw, int jw) const override
ReproduceDistancesObjective(int n, const double *source_dis_in, const double *target_dis_in, double dis_weight_factor)
void set_affine_target_dis(const double *source_dis_in)
inline ~ReproduceDistancesObjective() override

Public Members

double dis_weight_factor
std::vector<double> source_dis

“real” corrected distances (size n^2)

const double *target_dis

wanted distances (size n^2)

std::vector<double> weights

weights for each distance (size n^2)

int n

Public Static Functions

static inline double sqr(double x)
static void compute_mean_stdev(const double *tab, size_t n2, double *mean_out, double *stddev_out)
struct SimulatedAnnealingOptimizer : public faiss::SimulatedAnnealingParameters
#include <PolysemousTraining.h>

Simulated annealing optimization algorithm for permutations.

Public Functions

SimulatedAnnealingOptimizer(PermutationObjective *obj, const SimulatedAnnealingParameters &p)

logs values of the cost function

double optimize(int *perm)
double run_optimization(int *best_perm)
virtual ~SimulatedAnnealingOptimizer()

Public Members

PermutationObjective *obj
int n

size of the permutation

FILE *logfile
RandomGenerator *rnd
double init_cost

remember initial cost of optimization

double init_temperature = 0.7
double temperature_decay = 0.9997893011688015
int n_iter = 500000
int n_redo = 2
int seed = 123
int verbose = 0
bool only_bit_flips = false
bool init_random = false
struct PolysemousTraining : public faiss::SimulatedAnnealingParameters
#include <PolysemousTraining.h>

optimizes the order of indices in a ProductQuantizer

Public Types

enum Optimization_type_t

Values:

enumerator OT_None
enumerator OT_ReproduceDistances_affine

default

enumerator OT_Ranking_weighted_diff

same as _2, but use rank of y+ - rank of y-

Public Functions

PolysemousTraining()
void optimize_pq_for_hamming(ProductQuantizer &pq, size_t n, const float *x) const

reorder the centroids so that the Hamming distance becomes a good approximation of the SDC distance (called by train)

void optimize_ranking(ProductQuantizer &pq, size_t n, const float *x) const

called by optimize_pq_for_hamming

void optimize_reproduce_distances(ProductQuantizer &pq) const

called by optimize_pq_for_hamming

size_t memory_usage_per_thread(const ProductQuantizer &pq) const

make sure we don’t blow up the memory

Public Members

Optimization_type_t optimization_type
int ntrain_permutation

use 1/4 of the training points for the optimization, with max. ntrain_permutation. If ntrain_permutation == 0: train on centroids

double dis_weight_factor

decay of exp that weights distance loss

size_t max_memory

refuse to train if it would require more than that amount of RAM

std::string log_pattern
double init_temperature = 0.7
double temperature_decay = 0.9997893011688015
int n_iter = 500000
int n_redo = 2
int seed = 123
int verbose = 0
bool only_bit_flips = false
bool init_random = false
struct CodePackerPQ4 : public faiss::CodePacker
#include <pq4_fast_scan.h>

CodePacker API for the PQ4 fast-scan

Public Functions

CodePackerPQ4(size_t nsq, size_t bbs)
virtual void pack_1(const uint8_t *flat_code, size_t offset, uint8_t *block) const final
virtual void unpack_1(const uint8_t *block, size_t offset, uint8_t *flat_code) const final
virtual void pack_all(const uint8_t *flat_codes, uint8_t *block) const
virtual void unpack_all(const uint8_t *block, uint8_t *flat_codes) const

Public Members

size_t nsq
size_t code_size
size_t nvec
size_t block_size
struct ProductAdditiveQuantizer : public faiss::AdditiveQuantizer
#include <ProductAdditiveQuantizer.h>

Product Additive Quantizers

The product additive quantizer is a variant of AQ and PQ. It first splits the vector space into multiple orthogonal sub-spaces just like PQ does. And then it quantizes each sub-space by an independent additive quantizer.

Subclassed by faiss::ProductLocalSearchQuantizer, faiss::ProductResidualQuantizer

Public Types

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

ProductAdditiveQuantizer(size_t d, const std::vector<AdditiveQuantizer*> &aqs, Search_type_t search_type = ST_decompress)

Construct a product additive quantizer.

The additive quantizers passed in will be cloned into the ProductAdditiveQuantizer object.

Parameters:
  • d – dimensionality of the input vectors

  • aqs – sub-additive quantizers

  • search_type – AQ search type

ProductAdditiveQuantizer()
virtual ~ProductAdditiveQuantizer()
void init(size_t d, const std::vector<AdditiveQuantizer*> &aqs, Search_type_t search_type)
AdditiveQuantizer *subquantizer(size_t m) const

Train the product additive quantizer.

virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • centroids – centroids to be added to x, size n * d

void compute_unpacked_codes(const float *x, int32_t *codes, size_t n, const float *centroids = nullptr) const
virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const override

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const override

Compute inner-product look-up tables. Used in the search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

Public Members

size_t nsplits

number of sub-vectors we split a vector into

std::vector<AdditiveQuantizer*> quantizers
size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct ProductLocalSearchQuantizer : public faiss::ProductAdditiveQuantizer
#include <ProductAdditiveQuantizer.h>

Product Local Search Quantizer

Public Types

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

ProductLocalSearchQuantizer(size_t d, size_t nsplits, size_t Msub, size_t nbits, Search_type_t search_type = ST_decompress)

Construct a product LSQ object.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of sub-vectors we split a vector into

  • Msub – number of codebooks of each LSQ

  • nbits – bits for each step

  • search_type – AQ search type

ProductLocalSearchQuantizer()
void init(size_t d, const std::vector<AdditiveQuantizer*> &aqs, Search_type_t search_type)
AdditiveQuantizer *subquantizer(size_t m) const

Train the product additive quantizer.

virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • centroids – centroids to be added to x, size n * d

void compute_unpacked_codes(const float *x, int32_t *codes, size_t n, const float *centroids = nullptr) const
virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const override

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const override

Compute inner-product look-up tables. Used in the search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

Public Members

size_t nsplits

number of sub-vectors we split a vector into

std::vector<AdditiveQuantizer*> quantizers
size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct ProductResidualQuantizer : public faiss::ProductAdditiveQuantizer
#include <ProductAdditiveQuantizer.h>

Product Residual Quantizer

Public Types

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

ProductResidualQuantizer(size_t d, size_t nsplits, size_t Msub, size_t nbits, Search_type_t search_type = ST_decompress)

Construct a product RQ object.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of sub-vectors we split a vector into

  • Msub – number of codebooks of each RQ

  • nbits – bits for each step

  • search_type – AQ search type

ProductResidualQuantizer()
void init(size_t d, const std::vector<AdditiveQuantizer*> &aqs, Search_type_t search_type)
AdditiveQuantizer *subquantizer(size_t m) const

Train the product additive quantizer.

virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • centroids – centroids to be added to x, size n * d

void compute_unpacked_codes(const float *x, int32_t *codes, size_t n, const float *centroids = nullptr) const
virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const override

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const override

Compute inner-product look-up tables. Used in the search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

Public Members

size_t nsplits

number of sub-vectors we split a vector into

std::vector<AdditiveQuantizer*> quantizers
size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct ProductQuantizer : public faiss::Quantizer
#include <ProductQuantizer.h>

Product Quantizer. PQ is trained using k-means, minimizing the L2 distance to centroids. PQ supports L2 and Inner Product search, however the quantization error is biased towards L2 distance.

Public Types

enum train_type_t

initialization

Values:

enumerator Train_default
enumerator Train_hot_start

the centroids are already initialized

enumerator Train_shared

share dictionary across PQ segments

enumerator Train_hypercube

initialize centroids with nbits-D hypercube

enumerator Train_hypercube_pca

initialize centroids with nbits-D hypercube

Public Functions

inline float *get_centroids(size_t m, size_t i)

return the centroids associated with subvector m

inline const float *get_centroids(size_t m, size_t i) const
virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

ProductQuantizer(size_t d, size_t M, size_t nbits)
ProductQuantizer()
void set_derived_values()

compute derived values when d, M and nbits have been set

void set_params(const float *centroids, int m)

Define the centroids for subquantizer m.

void compute_code(const float *x, uint8_t *code) const

Quantize one vector with the product quantizer.

virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

same as compute_code for several vectors

void compute_codes_with_assign_index(const float *x, uint8_t *codes, size_t n)

speed up code assignment using assign_index (non-const because the index is changed)

void decode(const uint8_t *code, float *x) const

decode a vector from a given code (or n vectors if third argument)

virtual void decode(const uint8_t *code, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – input codes, size n * code_size

  • x – output vectors, size n * d

void compute_code_from_distance_table(const float *tab, uint8_t *code) const

If we happen to have the distance tables precomputed, this is more efficient to compute the codes.

void compute_distance_table(const float *x, float *dis_table) const

Compute distance table for one vector.

The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub matrix that contains

dis_table (m, j) = || x_m - c_(m, j)||^2 for m = 0..M-1 and j = 0 .. ksub - 1

where c_(m, j) is the centroid no j of sub-quantizer m.

Parameters:
  • x – input vector size d

  • dis_table – output table, size M * ksub

void compute_inner_prod_table(const float *x, float *dis_table) const
void compute_distance_tables(size_t nx, const float *x, float *dis_tables) const

compute distance table for several vectors

Parameters:
  • nx – nb of input vectors

  • x – input vector size nx * d

  • dis_table – output table, size nx * M * ksub

void compute_inner_prod_tables(size_t nx, const float *x, float *dis_tables) const
void search(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap = true) const

perform a search (L2 distance)

Parameters:
  • x – query vectors, size nx * d

  • nx – nb of queries

  • codes – database codes, size ncodes * code_size

  • ncodes – nb of nb vectors

  • res – heap array to store results (nh == nx)

  • init_finalize_heap – initialize heap (input) and sort (output)?

void search_ip(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_minheap_array_t *res, bool init_finalize_heap = true) const

same as search, but with inner product similarity

void compute_sdc_table()
void search_sdc(const uint8_t *qcodes, size_t nq, const uint8_t *bcodes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap = true) const
void sync_transposed_centroids()

Sync transposed centroids with regular centroids. This call is needed if centroids were edited directly.

void clear_transposed_centroids()

Clear transposed centroids table so ones are no longer used.

Public Members

size_t M

number of subquantizers

size_t nbits

number of bits per quantization index

size_t dsub

dimensionality of each subvector

size_t ksub

number of centroids for each subquantizer

bool verbose

verbose during training?

train_type_t train_type
ClusteringParameters cp

parameters used during clustering

Index *assign_index

if non-NULL, use this index for assignment (should be of size d / M)

std::vector<float> centroids

Centroid table, size M * ksub * dsub. Layout: (M, ksub, dsub)

std::vector<float> transposed_centroids

Transposed centroid table, size M * ksub * dsub. Layout: (dsub, M, ksub)

std::vector<float> centroids_sq_lengths

Squared lengths of centroids, size M * ksub Layout: (M, ksub)

std::vector<float> sdc_table

Symmetric Distance Table.

size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct PQEncoderGeneric

Public Functions

inline PQEncoderGeneric(uint8_t *code, int nbits, uint8_t offset = 0)
inline void encode(uint64_t x)
inline ~PQEncoderGeneric()

Public Members

uint8_t *code

code for this vector

uint8_t offset
const int nbits

number of bits per subquantizer index

uint8_t reg
struct PQEncoder8

Public Functions

inline PQEncoder8(uint8_t *code, int nbits)
inline void encode(uint64_t x)

Public Members

uint8_t *code
struct PQEncoder16

Public Functions

inline PQEncoder16(uint8_t *code, int nbits)
inline void encode(uint64_t x)

Public Members

uint16_t *code
struct PQDecoderGeneric

Public Functions

inline PQDecoderGeneric(const uint8_t *code, int nbits)
inline uint64_t decode()

Public Members

const uint8_t *code
uint8_t offset
const int nbits
const uint64_t mask
uint8_t reg
struct PQDecoder8

Public Functions

inline PQDecoder8(const uint8_t *code, int nbits)
inline uint64_t decode()

Public Members

const uint8_t *code

Public Static Attributes

static const int nbits = 8
struct PQDecoder16

Public Functions

inline PQDecoder16(const uint8_t *code, int nbits)
inline uint64_t decode()

Public Members

const uint16_t *code

Public Static Attributes

static const int nbits = 16
struct Quantizer
#include <Quantizer.h>

General interface for quantizer objects

Subclassed by faiss::AdditiveQuantizer, faiss::ProductQuantizer, faiss::ScalarQuantizer

Public Functions

inline explicit Quantizer(size_t d = 0, size_t code_size = 0)
virtual void train(size_t n, const float *x) = 0

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const = 0

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

virtual void decode(const uint8_t *code, float *x, size_t n) const = 0

Decode a set of vectors

Parameters:
  • codes – input codes, size n * code_size

  • x – output vectors, size n * d

inline virtual ~Quantizer()

Public Members

size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct ResidualQuantizer : public faiss::AdditiveQuantizer
#include <ResidualQuantizer.h>

Residual quantizer with variable number of bits per sub-quantizer

The residual centroids are stored in a big cumulative centroid table. The codes are represented either as a non-compact table of size (n, M) or as the compact output (n, code_size).

Public Types

using train_type_t = int

initialization

enum Search_type_t

Encodes how search is performed and how vectors are encoded.

Values:

enumerator ST_decompress

decompress database vector

enumerator ST_LUT_nonorm

use a LUT, don’t include norms (OK for IP or normalized vectors)

enumerator ST_norm_from_LUT

compute the norms from the look-up tables (cost is in O(M^2))

enumerator ST_norm_float

use a LUT, and store float32 norm with the vectors

enumerator ST_norm_qint8

use a LUT, and store 8bit-quantized norm

enumerator ST_norm_qint4
enumerator ST_norm_cqint8

use a LUT, and store non-uniform quantized norm

enumerator ST_norm_cqint4
enumerator ST_norm_lsq2x4

use a 2x4 bits lsq as norm quantizer (for fast scan)

enumerator ST_norm_rq2x4

use a 2x4 bits rq as norm quantizer (for fast scan)

Public Functions

ResidualQuantizer(size_t d, const std::vector<size_t> &nbits, Search_type_t search_type = ST_decompress)
ResidualQuantizer(size_t d, size_t M, size_t nbits, Search_type_t search_type = ST_decompress)
ResidualQuantizer()
virtual void train(size_t n, const float *x) override

Train the residual quantizer.

void initialize_from(const ResidualQuantizer &other, int skip_M = 0)

Copy the M codebook levels from other, starting from skip_M.

float retrain_AQ_codebook(size_t n, const float *x)

Encode the vectors and compute codebook that minimizes the quantization error on these codes

Parameters:
  • x – training vectors, size n * d

  • n – nb of training vectors, n >= total_codebook_size

Returns:

returns quantization error for the new codebook with old codes

virtual void compute_codes_add_centroids(const float *x, uint8_t *codes, size_t n, const float *centroids = nullptr) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

  • centroids – centroids to be added to x, size n * d

void refine_beam(size_t n, size_t beam_size, const float *residuals, int new_beam_size, int32_t *new_codes, float *new_residuals = nullptr, float *new_distances = nullptr) const

lower-level encode function

Parameters:
  • n – number of vectors to handle

  • residuals – vectors to encode, size (n, beam_size, d)

  • beam_size – input beam size

  • new_beam_size – output beam size (should be <= K * beam_size)

  • new_codes – output codes, size (n, new_beam_size, m + 1)

  • new_residuals – output residuals, size (n, new_beam_size, d)

  • new_distances – output distances, size (n, new_beam_size)

void refine_beam_LUT(size_t n, const float *query_norms, const float *query_cp, int new_beam_size, int32_t *new_codes, float *new_distances = nullptr) const
size_t memory_per_point(int beam_size = -1) const

Beam search can consume a lot of memory. This function estimates the amount of mem used by refine_beam to adjust the batch size

Parameters:

beam_size – if != -1, override the beam size

void compute_codebook_tables()
uint64_t encode_norm(float norm) const

encode a norm into norm_bits bits

uint32_t encode_qcint(float x) const

encode norm by non-uniform scalar quantization

float decode_qcint(uint32_t c) const

decode norm by non-uniform scalar quantization

void set_derived_values()

Train the norm quantizer.

void train_norm(size_t n, const float *norms)
inline virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Quantize a set of vectors

Parameters:
  • x – input vectors, size n * d

  • codes – output codes, size n * code_size

void pack_codes(size_t n, const int32_t *codes, uint8_t *packed_codes, int64_t ld_codes = -1, const float *norms = nullptr, const float *centroids = nullptr) const

pack a series of code to bit-compact format

Parameters:
  • codes – codes to be packed, size n * code_size

  • packed_codes – output bit-compact codes

  • ld_codes – leading dimension of codes

  • norms – norms of the vectors (size n). Will be computed if needed but not provided

  • centroids – centroids to be added to x, size n * d

virtual void decode(const uint8_t *codes, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

virtual void decode_unpacked(const int32_t *codes, float *x, size_t n, int64_t ld_codes = -1) const

Decode a set of vectors in non-packed format

Parameters:
  • codes – codes to decode, size n * ld_codes

  • x – output vectors, size n * d

template<bool is_IP, Search_type_t effective_search_type>
float compute_1_distance_LUT(const uint8_t *codes, const float *LUT) const
void decode_64bit(idx_t n, float *x) const

decoding function for a code in a 64-bit word

virtual void compute_LUT(size_t n, const float *xq, float *LUT, float alpha = 1.0f, long ld_lut = -1) const

Compute inner-product look-up tables. Used in the centroid search functions.

Parameters:
  • xq – query vector, size (n, d)

  • LUT – look-up table, size (n, total_codebook_size)

  • alpha – compute alpha * inner-product

  • ld_lut – leading dimension of LUT

void knn_centroids_inner_product(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels) const

exact IP search

void compute_centroid_norms(float *norms) const

For L2 search we need the L2 norms of the centroids

Parameters:

norms – output norms table, size total_codebook_size

void knn_centroids_L2(idx_t n, const float *xq, idx_t k, float *distances, idx_t *labels, const float *centroid_norms) const

Exact L2 search, with precomputed norms

Public Members

train_type_t train_type = Train_progressive_dim

Binary or of the Train_* flags below.

int niter_codebook_refine = 5

number of iterations for codebook refinement.

int max_beam_size = 5

beam size used for training and for encoding

int use_beam_LUT = 0

use LUT for beam search

ApproxTopK_mode_t approx_topk_mode = ApproxTopK_mode_t::EXACT_TOPK

Currently used mode of approximate min-k computations. Default value is EXACT_TOPK.

ProgressiveDimClusteringParameters cp

clustering parameters

ProgressiveDimIndexFactory *assign_index_factory = nullptr

if non-NULL, use this index for assignment

size_t M

number of codebooks

std::vector<size_t> nbits

bits for each step

std::vector<float> codebooks

codebooks

std::vector<uint64_t> codebook_offsets

codebook #1 is stored in rows codebook_offsets[i]:codebook_offsets[i+1] in the codebooks table of size total_codebook_size by d

size_t tot_bits = 0

total number of bits (indexes + norms)

size_t norm_bits = 0

bits allocated for the norms

size_t total_codebook_size = 0

size of the codebook in vectors

bool only_8bit = false

are all nbits = 8 (use faster decoder)

bool verbose = false

verbose during training?

bool is_trained = false

is trained or not

std::vector<float> norm_tabs

auxiliary data for ST_norm_lsq2x4 and ST_norm_rq2x4 store norms of codebook entries for 4-bit fastscan

IndexFlat1D qnorm

store and search norms

std::vector<float> centroid_norms

norms of all codebook entries (size total_codebook_size)

std::vector<float> codebook_cross_products

dot products of all codebook entries with the previous codebooks size sum(codebook_offsets[m] * 2^nbits[m], m=0..M-1)

size_t max_mem_distances = 5 * (size_t(1) << 30)

norms and distance matrixes with beam search can get large, so use this to control for the amount of memory that can be allocated

Search_type_t search_type

Also determines what’s in the codes.

float norm_min = NAN

min/max for quantization of norms

float norm_max = NAN
size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

Public Static Attributes

static const int Train_default = 0

regular k-means (minimal amount of computation)

static const int Train_progressive_dim = 1

progressive dim clustering (set by default)

static const int Train_refine_codebook = 2

do a few iterations of codebook refinement after first level estimation

static const int Train_top_beam = 1024

set this bit on train_type if beam is to be trained only on the first element of the beam (faster but less accurate)

static const int Skip_codebook_tables = 2048

set this bit to not autmatically compute the codebook tables after training

template<class C, bool use_sel = false>
struct BlockResultHandler

Public Functions

inline explicit BlockResultHandler(size_t nq, const IDSelector *sel = nullptr)
inline virtual void begin_multiple(size_t i0_2, size_t i1_2)
inline virtual void add_results(size_t, size_t, const typename C::T*)
inline virtual void end_multiple()
inline virtual ~BlockResultHandler()
inline bool is_in_selection(idx_t i) const

Public Members

size_t nq
const IDSelector *sel
size_t i0 = 0
size_t i1 = 0
template<class C, bool use_sel = false>
struct Top1BlockResultHandler : public faiss::BlockResultHandler<C, false>

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline Top1BlockResultHandler(size_t nq, T *dis_tab, TI *ids_tab, const IDSelector *sel = nullptr)
inline virtual void begin_multiple(size_t i0, size_t i1) final

begin

inline void add_results(size_t j0, size_t j1, const T *dis_tab_2) final

add results for query i0..i1 and j0..j1

inline void add_result(const size_t i, const T dis, const TI idx)
inline virtual void add_results(size_t, size_t, const typename C::T*)
inline virtual void end_multiple()
inline bool is_in_selection(idx_t i) const

Public Members

T *dis_tab
TI *ids_tab
size_t nq
const IDSelector *sel
size_t i0
size_t i1
struct SingleResultHandler : public faiss::ResultHandler<C>

Public Functions

inline explicit SingleResultHandler(Top1BlockResultHandler &hr)
inline void begin(const size_t current_idx_2)

begin results for query # i

inline virtual bool add_result(T dis, TI idx) final

add one result for query i

inline void end()

series of results for query i is done

Public Members

Top1BlockResultHandler &hr
TI min_idx
size_t current_idx = 0
C::T threshold = C::neutral()
template<class C, bool use_sel = false>
struct HeapBlockResultHandler : public faiss::BlockResultHandler<C, false>

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline HeapBlockResultHandler(size_t nq, T *heap_dis_tab, TI *heap_ids_tab, size_t k, const IDSelector *sel = nullptr)
inline virtual void begin_multiple(size_t i0_2, size_t i1_2) final

begin

inline void add_results(size_t j0, size_t j1, const T *dis_tab) final

add results for query i0..i1 and j0..j1

inline virtual void end_multiple() final

series of results for queries i0..i1 is done

inline virtual void add_results(size_t, size_t, const typename C::T*)
inline bool is_in_selection(idx_t i) const

Public Members

T *heap_dis_tab
TI *heap_ids_tab
int64_t k
size_t nq
const IDSelector *sel
size_t i0
size_t i1
struct SingleResultHandler : public faiss::ResultHandler<C>

Public Functions

inline explicit SingleResultHandler(HeapBlockResultHandler &hr)
inline void begin(size_t i)

begin results for query # i

inline virtual bool add_result(T dis, TI idx) final

add one result for query i

inline void end()

series of results for query i is done

Public Members

HeapBlockResultHandler &hr
size_t k
T *heap_dis
TI *heap_ids
C::T threshold = C::neutral()
template<class C>
struct ReservoirTopN : public faiss::ResultHandler<C>
#include <ResultHandler.h>

Reservoir for a single query.

Subclassed by faiss::ReservoirBlockResultHandler< C, use_sel >::SingleResultHandler

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline ReservoirTopN()
inline ReservoirTopN(size_t n, size_t capacity, T *vals, TI *ids)
inline virtual bool add_result(T val, TI id) final
inline void add(T val, TI id)
inline void shrink_fuzzy()
inline void shrink()
inline void to_result(T *heap_dis, TI *heap_ids) const

Public Members

T *vals
TI *ids
size_t i
size_t n
size_t capacity
C::T threshold = C::neutral()
template<class C, bool use_sel = false>
struct ReservoirBlockResultHandler : public faiss::BlockResultHandler<C, false>

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline ReservoirBlockResultHandler(size_t nq, T *heap_dis_tab, TI *heap_ids_tab, size_t k, const IDSelector *sel = nullptr)
inline virtual void begin_multiple(size_t i0_2, size_t i1_2)

begin

inline void add_results(size_t j0, size_t j1, const T *dis_tab)

add results for query i0..i1 and j0..j1

inline virtual void end_multiple() final

series of results for queries i0..i1 is done

inline virtual void add_results(size_t, size_t, const typename C::T*)
inline bool is_in_selection(idx_t i) const

Public Members

T *heap_dis_tab
TI *heap_ids_tab
int64_t k
size_t capacity
std::vector<T> reservoir_dis
std::vector<TI> reservoir_ids
std::vector<ReservoirTopN<C>> reservoirs
size_t nq
const IDSelector *sel
size_t i0
size_t i1
struct SingleResultHandler : public faiss::ReservoirTopN<C>

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline explicit SingleResultHandler(ReservoirBlockResultHandler &hr)
inline void begin(size_t qno_2)

begin results for query # i

inline void end()

series of results for query qno is done

inline virtual bool add_result(T val, TI id) final
inline void add(T val, TI id)
inline void shrink_fuzzy()
inline void shrink()
inline void to_result(T *heap_dis, TI *heap_ids) const

Public Members

ReservoirBlockResultHandler &hr
std::vector<T> reservoir_dis
std::vector<TI> reservoir_ids
size_t qno
T *vals
TI *ids
size_t i
size_t n
size_t capacity
C::T threshold = C::neutral()
template<class C, bool use_sel = false>
struct RangeSearchBlockResultHandler : public faiss::BlockResultHandler<C, false>

Public Types

using T = typename C::T
using TI = typename C::TI

Public Functions

inline RangeSearchBlockResultHandler(RangeSearchResult *res, float radius, const IDSelector *sel = nullptr)
inline virtual void begin_multiple(size_t i0_2, size_t i1_2)

begin

inline void add_results(size_t j0, size_t j1, const T *dis_tab)

add results for query i0..i1 and j0..j1

inline ~RangeSearchBlockResultHandler()
inline virtual void add_results(size_t, size_t, const typename C::T*)
inline virtual void end_multiple()
inline bool is_in_selection(idx_t i) const

Public Members

RangeSearchResult *res
T radius
std::vector<RangeSearchPartialResult*> partial_results
std::vector<size_t> j0s
int pr = 0
size_t nq
const IDSelector *sel
size_t i0
size_t i1
struct SingleResultHandler : public faiss::ResultHandler<C>

Public Functions

inline explicit SingleResultHandler(RangeSearchBlockResultHandler &rh)
inline void begin(size_t i)

begin results for query # i

inline virtual bool add_result(T dis, TI idx) final

add one result for query i

inline void end()

series of results for query i is done

inline ~SingleResultHandler()

Public Members

RangeSearchPartialResult pres
RangeQueryResult *qr = nullptr
C::T threshold = C::neutral()
struct ScalarQuantizer : public faiss::Quantizer
#include <ScalarQuantizer.h>

The uniform quantizer has a range [vmin, vmax]. The range can be the same for all dimensions (uniform) or specific per dimension (default).

Public Types

enum QuantizerType

Values:

enumerator QT_8bit

8 bits per component

enumerator QT_4bit

4 bits per component

enumerator QT_8bit_uniform

same, shared range for all dimensions

enumerator QT_4bit_uniform
enumerator QT_fp16
enumerator QT_8bit_direct

fast indexing of uint8s

enumerator QT_6bit

6 bits per component

enumerator QT_bf16
enumerator QT_8bit_direct_signed

fast indexing of signed int8s ranging from [-128 to 127]

enum RangeStat

The uniform encoder can estimate the range of representable values of the unform encoder using different statistics. Here rs = rangestat_arg

Values:

enumerator RS_minmax

[min - rs*(max-min), max + rs*(max-min)]

enumerator RS_meanstd

[mean - std * rs, mean + std * rs]

enumerator RS_quantiles

[Q(rs), Q(1-rs)]

enumerator RS_optim

alternate optimization of reconstruction error

Public Functions

ScalarQuantizer(size_t d, QuantizerType qtype)
ScalarQuantizer()
void set_derived_sizes()

updates internal values based on qtype and d

virtual void train(size_t n, const float *x) override

Train the quantizer

Parameters:

x – training vectors, size n * d

virtual void compute_codes(const float *x, uint8_t *codes, size_t n) const override

Encode a set of vectors

Parameters:
  • x – vectors to encode, size n * d

  • codes – output codes, size n * code_size

virtual void decode(const uint8_t *code, float *x, size_t n) const override

Decode a set of vectors

Parameters:
  • codes – codes to decode, size n * code_size

  • x – output vectors, size n * d

SQuantizer *select_quantizer() const
SQDistanceComputer *get_distance_computer(MetricType metric = METRIC_L2) const
InvertedListScanner *select_InvertedListScanner(MetricType mt, const Index *quantizer, bool store_pairs, const IDSelector *sel, bool by_residual = false) const

Public Members

QuantizerType qtype = QT_8bit
RangeStat rangestat = RS_minmax
float rangestat_arg = 0
size_t bits = 0

bits per scalar code

std::vector<float> trained

trained values (including the range)

size_t d

size of the input vectors

size_t code_size

bytes per indexed vector

struct SQDistanceComputer : public faiss::FlatCodesDistanceComputer

Public Functions

inline SQDistanceComputer()
virtual float query_to_code(const uint8_t *code) const = 0
inline virtual float distance_to_code(const uint8_t *code) final

compute distance of current query to an encoded vector

inline virtual float operator()(idx_t i) override

compute distance of vector i to current query

virtual void set_query(const float *x) = 0

called before computing distances. Pointer x should remain valid while operator () is called

inline virtual void distances_batch_4(const idx_t idx0, const idx_t idx1, const idx_t idx2, const idx_t idx3, float &dis0, float &dis1, float &dis2, float &dis3)

compute distances of current query to 4 stored vectors. certain DistanceComputer implementations may benefit heavily from this.

virtual float symmetric_dis(idx_t i, idx_t j) = 0

compute distance between two stored vectors

Public Members

const float *q
const uint8_t *codes
size_t code_size
struct SQuantizer

Public Functions

virtual void encode_vector(const float *x, uint8_t *code) const = 0
virtual void decode_vector(const uint8_t *code, float *x) const = 0
inline virtual ~SQuantizer()
struct SIMDResultHandler

Subclassed by faiss::SIMDResultHandlerToFloat, faiss::simd_result_handlers::DummyResultHandler, faiss::simd_result_handlers::FixedStorageHandler< NQ, BB >, faiss::simd_result_handlers::StoreResultHandler

Public Functions

virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) = 0

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

virtual void set_block_origin(size_t i0, size_t j0) = 0

set the sub-matrix that is being computed

inline virtual ~SIMDResultHandler()

Public Members

bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
struct SIMDResultHandlerToFloat : public faiss::SIMDResultHandler

Subclassed by faiss::simd_result_handlers::ResultHandlerCompare< C, false >, faiss::simd_result_handlers::ResultHandlerCompare< C, with_id_map >

Public Functions

inline SIMDResultHandlerToFloat(size_t nq, size_t ntotal)
inline virtual void begin(const float *norms)
inline virtual void end()
virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) = 0

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

virtual void set_block_origin(size_t i0, size_t j0) = 0

set the sub-matrix that is being computed

Public Members

size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<typename IndexT>
class ThreadedIndex : public IndexT
#include <ThreadedIndex.h>

A holder of indices in a collection of threads The interface to this class itself is not thread safe

Subclassed by faiss::IndexReplicasTemplate< IndexT >, faiss::IndexShardsTemplate< IndexT >

Public Functions

explicit ThreadedIndex(bool threaded)
explicit ThreadedIndex(int d, bool threaded)
~ThreadedIndex() override
virtual void addIndex(IndexT *index)

override an index that is managed by ourselves. WARNING: once an index is added, it becomes unsafe to touch it from any other thread than that on which is managing it, until we are shut down. Use runOnIndex to perform work on it instead.

void removeIndex(IndexT *index)

Remove an index that is managed by ourselves. This will flush all pending work on that index, and then shut down its managing thread, and will remove the index.

void runOnIndex(std::function<void(int, IndexT*)> f)

Run a function on all indices, in the thread that the index is managed in. Function arguments are (index in collection, index pointer)

void runOnIndex(std::function<void(int, const IndexT*)> f) const
void reset() override

faiss::Index API All indices receive the same call

inline int count() const

Returns the number of sub-indices.

inline IndexT *at(size_t i)

Returns the i-th sub-index.

inline const IndexT *at(size_t i) const

Returns the i-th sub-index (const version)

Public Members

bool own_indices = false

Whether or not we are responsible for deleting our contained indices.

Protected Functions

virtual void onAfterAddIndex(IndexT *index)

Called just after an index is added.

virtual void onAfterRemoveIndex(IndexT *index)

Called just after an index is removed.

Protected Attributes

std::vector<std::pair<IndexT*, std::unique_ptr<WorkerThread>>> indices_

Collection of Index instances, with their managing worker thread if any.

bool isThreaded_

Is this index multi-threaded?

Protected Static Functions

static void waitAndHandleFutures(std::vector<std::future<bool>> &v)
struct SearchParameters
#include <Index.h>

Parent class for the optional search paramenters.

Sub-classes with additional search parameters should inherit this class. Ownership of the object fields is always to the caller.

Subclassed by faiss::IndexRefineSearchParameters, faiss::SearchParametersHNSW, faiss::SearchParametersIVF, faiss::SearchParametersPQ, faiss::SearchParametersPreTransform, faiss::SearchParametersResidualCoarseQuantizer, faiss::gpu::SearchParametersCagra

Public Functions

inline virtual ~SearchParameters()

make sure we can dynamic_cast this

Public Members

IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct Index
#include <Index.h>

Abstract structure for an index, supports adding vectors and searching them.

All vectors provided at add or search time are 32-bit float arrays, although the internal representation may vary.

Subclassed by faiss::AdditiveCoarseQuantizer, faiss::IndexFastScan, faiss::IndexFlatCodes, faiss::IndexHNSW, faiss::IndexIVF, faiss::IndexIVFIndependentQuantizer, faiss::IndexNNDescent, faiss::IndexNSG, faiss::IndexPreTransform, faiss::IndexRandom, faiss::IndexRefine, faiss::IndexRowwiseMinMaxBase, faiss::IndexSplitVectors, faiss::MultiIndexQuantizer, faiss::gpu::GpuIndex

Public Types

using component_t = float
using distance_t = float

Public Functions

inline explicit Index(idx_t d = 0, MetricType metric = METRIC_L2)
virtual ~Index()
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add(idx_t n, const float *x) = 0

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const = 0

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reset() = 0

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct Index2Layer : public faiss::IndexFlatCodes
#include <Index2Layer.h>

Same as an IndexIVFPQ without the inverted lists: codes are stored sequentially

The class is mainly inteded to store encoded vectors that can be accessed randomly, the search function is not implemented.

Public Types

using component_t = float
using distance_t = float

Public Functions

Index2Layer(Index *quantizer, size_t nlist, int M, int nbit = 8, MetricType metric = METRIC_L2)
Index2Layer()
~Index2Layer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

not implemented

virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void transfer_to_IVFPQ(IndexIVFPQ &other) const

transfer the flat codes to an IVFPQ index

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

Level1Quantizer q1

first level quantizer

ProductQuantizer pq

second level quantizer is always a PQ

size_t code_size_1

size of the code for the first level (ceil(log8(q1.nlist)))

size_t code_size_2

size of the code for the second level

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexAdditiveQuantizer : public faiss::IndexFlatCodes
#include <IndexAdditiveQuantizer.h>

Abstract class for additive quantizers. The search functions are in common.

Subclassed by faiss::IndexLocalSearchQuantizer, faiss::IndexProductLocalSearchQuantizer, faiss::IndexProductResidualQuantizer, faiss::IndexResidualQuantizer

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

explicit IndexAdditiveQuantizer(idx_t d, AdditiveQuantizer *aq, MetricType metric = METRIC_L2)
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

AdditiveQuantizer *aq
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexResidualQuantizer : public faiss::IndexAdditiveQuantizer
#include <IndexAdditiveQuantizer.h>

Index based on a residual quantizer. Stored vectors are approximated by residual quantization codes. Can also be used as a codec

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexResidualQuantizer(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexResidualQuantizer(int d, const std::vector<size_t> &nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)
IndexResidualQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

ResidualQuantizer rq

The residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexLocalSearchQuantizer : public faiss::IndexAdditiveQuantizer

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexLocalSearchQuantizer(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexLocalSearchQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

LocalSearchQuantizer lsq
AdditiveQuantizer *aq
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexProductResidualQuantizer : public faiss::IndexAdditiveQuantizer
#include <IndexAdditiveQuantizer.h>

Index based on a product residual quantizer.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexProductResidualQuantizer(int d, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of residual quantizers

  • Msub – number of subquantizers per RQ

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • nsplits – number of residual quantizers

  • Msub – number of subquantizers per RQ

  • nbits – number of bit per subvector index

IndexProductResidualQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

ProductResidualQuantizer prq

The product residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexProductLocalSearchQuantizer : public faiss::IndexAdditiveQuantizer
#include <IndexAdditiveQuantizer.h>

Index based on a product local search quantizer.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexProductLocalSearchQuantizer(int d, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of local search quantizers

  • Msub – number of subquantizers per LSQ

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • nsplits – number of local search quantizers

  • Msub – number of subquantizers per LSQ

  • nbits – number of bit per subvector index

IndexProductLocalSearchQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

ProductLocalSearchQuantizer plsq

The product local search quantizer used to encode the vectors.

AdditiveQuantizer *aq
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct AdditiveCoarseQuantizer : public faiss::Index
#include <IndexAdditiveQuantizer.h>

A “virtual” index where the elements are the residual quantizer centroids.

Intended for use as a coarse quantizer in an IndexIVF.

Subclassed by faiss::LocalSearchCoarseQuantizer, faiss::ResidualCoarseQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit AdditiveCoarseQuantizer(idx_t d = 0, AdditiveQuantizer *aq = nullptr, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

N/A.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void reset() override

N/A.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

AdditiveQuantizer *aq
std::vector<float> centroid_norms

norms of centroids, useful for knn-search

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct SearchParametersResidualCoarseQuantizer : public faiss::SearchParameters

Public Functions

inline ~SearchParametersResidualCoarseQuantizer()

Public Members

float beam_factor = 4.0f
IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct ResidualCoarseQuantizer : public faiss::AdditiveCoarseQuantizer
#include <IndexAdditiveQuantizer.h>

The ResidualCoarseQuantizer is a bit specialized compared to the default AdditiveCoarseQuantizer because it can use a beam search at search time (slow but may be useful for very large vocabularies)

Public Types

using component_t = float
using distance_t = float

Public Functions

void set_beam_factor(float new_beam_factor)

computes centroid norms if required

ResidualCoarseQuantizer(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

ResidualCoarseQuantizer(int d, const std::vector<size_t> &nbits, MetricType metric = METRIC_L2)
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

void initialize_from(const ResidualCoarseQuantizer &other)

Copy the M first codebook levels from other. Useful to crop a ResidualQuantizer to its first M quantizers.

ResidualCoarseQuantizer()
virtual void add(idx_t n, const float *x) override

N/A.

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void reset() override

N/A.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ResidualQuantizer rq

The residual quantizer used to encode the vectors.

float beam_factor = 4.0f

factor between the beam size and the search k if negative, use exact search-to-centroid

AdditiveQuantizer *aq
std::vector<float> centroid_norms

norms of centroids, useful for knn-search

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct LocalSearchCoarseQuantizer : public faiss::AdditiveCoarseQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

LocalSearchCoarseQuantizer(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

LocalSearchCoarseQuantizer()
virtual void add(idx_t n, const float *x) override

N/A.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void reset() override

N/A.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

LocalSearchQuantizer lsq

The residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
std::vector<float> centroid_norms

norms of centroids, useful for knn-search

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexAdditiveQuantizerFastScan : public faiss::IndexFastScan
#include <IndexAdditiveQuantizerFastScan.h>

Fast scan version of IndexAQ. Works for 4-bit AQ for now.

The codes are not stored sequentially but grouped in blocks of size bbs. This makes it possible to compute distances quickly with SIMD instructions.

Implementations: 12: blocked loop with internal loop on Q with qbs 13: same with reservoir accumulator to store results 14: no qbs with heap accumulator 15: no qbs with reservoir accumulator

Subclassed by faiss::IndexLocalSearchQuantizerFastScan, faiss::IndexProductLocalSearchQuantizerFastScan, faiss::IndexProductResidualQuantizerFastScan, faiss::IndexResidualQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

explicit IndexAdditiveQuantizerFastScan(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
void init(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
IndexAdditiveQuantizerFastScan()
~IndexAdditiveQuantizerFastScan() override
explicit IndexAdditiveQuantizerFastScan(const IndexAdditiveQuantizer &orig, int bbs = 32)

build from an existing IndexAQ

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

void estimate_norm_scale(idx_t n, const float *x)
virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexAdditiveQuantizerFastScan object are non- contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

AdditiveQuantizer *aq
bool rescale_norm = true
int norm_scale = 1
size_t max_train_points = 0
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexResidualQuantizerFastScan : public faiss::IndexAdditiveQuantizerFastScan
#include <IndexAdditiveQuantizerFastScan.h>

Index based on a residual quantizer. Stored vectors are approximated by residual quantization codes. Can also be used as a codec

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexResidualQuantizerFastScan(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_rq2x4, int bbs = 32)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • metric – metric type

  • search_type – AQ search type

IndexResidualQuantizerFastScan()
void init(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

void estimate_norm_scale(idx_t n, const float *x)
virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexAdditiveQuantizerFastScan object are non- contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ResidualQuantizer rq

The residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
bool rescale_norm = true
int norm_scale = 1
size_t max_train_points = 0
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexLocalSearchQuantizerFastScan : public faiss::IndexAdditiveQuantizerFastScan
#include <IndexAdditiveQuantizerFastScan.h>

Index based on a local search quantizer. Stored vectors are approximated by local search quantization codes. Can also be used as a codec

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexLocalSearchQuantizerFastScan(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_lsq2x4, int bbs = 32)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

  • metric – metric type

  • search_type – AQ search type

IndexLocalSearchQuantizerFastScan()
void init(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

void estimate_norm_scale(idx_t n, const float *x)
virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexAdditiveQuantizerFastScan object are non- contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

LocalSearchQuantizer lsq
AdditiveQuantizer *aq
bool rescale_norm = true
int norm_scale = 1
size_t max_train_points = 0
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexProductResidualQuantizerFastScan : public faiss::IndexAdditiveQuantizerFastScan
#include <IndexAdditiveQuantizerFastScan.h>

Index based on a product residual quantizer. Stored vectors are approximated by product residual quantization codes. Can also be used as a codec

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexProductResidualQuantizerFastScan(int d, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_rq2x4, int bbs = 32)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of residual quantizers

  • Msub – number of subquantizers per RQ

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • nsplits – number of residual quantizers

  • Msub – number of subquantizers per RQ

  • nbits – number of bit per subvector index

  • metric – metric type

  • search_type – AQ search type

IndexProductResidualQuantizerFastScan()
void init(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

void estimate_norm_scale(idx_t n, const float *x)
virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexAdditiveQuantizerFastScan object are non- contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ProductResidualQuantizer prq

The product residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
bool rescale_norm = true
int norm_scale = 1
size_t max_train_points = 0
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexProductLocalSearchQuantizerFastScan : public faiss::IndexAdditiveQuantizerFastScan
#include <IndexAdditiveQuantizerFastScan.h>

Index based on a product local search quantizer. Stored vectors are approximated by product local search quantization codes. Can also be used as a codec

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexProductLocalSearchQuantizerFastScan(int d, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_rq2x4, int bbs = 32)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of local search quantizers

  • Msub – number of subquantizers per LSQ

  • nbits – number of bit per subvector index

  • d – dimensionality of the input vectors

  • nsplits – number of local search quantizers

  • Msub – number of subquantizers per LSQ

  • nbits – number of bit per subvector index

  • metric – metric type

  • search_type – AQ search type

IndexProductLocalSearchQuantizerFastScan()
void init(AdditiveQuantizer *aq, MetricType metric = METRIC_L2, int bbs = 32)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

void estimate_norm_scale(idx_t n, const float *x)
virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexAdditiveQuantizerFastScan object are non- contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ProductLocalSearchQuantizer plsq

The product local search quantizer used to encode the vectors.

AdditiveQuantizer *aq
bool rescale_norm = true
int norm_scale = 1
size_t max_train_points = 0
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexBinary
#include <IndexBinary.h>

Abstract structure for a binary index.

Supports adding vertices and searching them.

All queries are symmetric because there is no distinction between codes and vectors.

Subclassed by faiss::IndexBinaryFlat, faiss::IndexBinaryFromFloat, faiss::IndexBinaryHNSW, faiss::IndexBinaryHash, faiss::IndexBinaryIVF, faiss::IndexBinaryMultiHash, faiss::gpu::GpuIndexBinaryFlat

Public Types

using component_t = uint8_t
using distance_t = int32_t

Public Functions

explicit IndexBinary(idx_t d = 0, MetricType metric = METRIC_L2)
virtual ~IndexBinary()
virtual void train(idx_t n, const uint8_t *x)

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

virtual void add(idx_t n, const uint8_t *x) = 0

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const = 0

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual void reset() = 0

Removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct(idx_t key, uint8_t *recons) const

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct IndexBinaryFlat : public faiss::IndexBinary
#include <IndexBinaryFlat.h>

Index that stores the full vectors and performs exhaustive search.

Public Types

using component_t = uint8_t
using distance_t = int32_t

Public Functions

explicit IndexBinaryFlat(idx_t d)
virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void reset() override

Removes all elements from the database.

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, uint8_t *recons) const override

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual size_t remove_ids(const IDSelector &sel) override

Remove some ids. Note that because of the indexing structure, the semantics of this operation are different from the usual ones: the new ids are shifted.

inline IndexBinaryFlat()
virtual void train(idx_t n, const uint8_t *x)

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

std::vector<uint8_t> xb

database vectors, size ntotal * d / 8

bool use_heap = true

Select between using a heap or counting to select the k smallest values when scanning inverted lists.

size_t query_batch_size = 32
ApproxTopK_mode_t approx_topk_mode = ApproxTopK_mode_t::EXACT_TOPK
int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct IndexBinaryFromFloat : public faiss::IndexBinary
#include <IndexBinaryFromFloat.h>

IndexBinary backed by a float Index.

Supports adding vertices and searching them.

All queries are symmetric because there is no distinction between codes and vectors.

Public Types

using component_t = uint8_t
using distance_t = int32_t

Public Functions

IndexBinaryFromFloat()
explicit IndexBinaryFromFloat(Index *index)
~IndexBinaryFromFloat()
virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void reset() override

Removes all elements from the database.

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

virtual void train(idx_t n, const uint8_t *x) override

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct(idx_t key, uint8_t *recons) const

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

Index *index = nullptr
bool own_fields = false

Whether object owns the index pointer.

int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct IndexBinaryHash : public faiss::IndexBinary
#include <IndexBinaryHash.h>

just uses the b first bits as a hash value

Public Types

using InvertedListMap = std::unordered_map<idx_t, InvertedList>
using component_t = uint8_t
using distance_t = int32_t

Public Functions

IndexBinaryHash(int d, int b)
IndexBinaryHash()
virtual void reset() override

Removes all elements from the database.

virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids) override

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

void display() const
size_t hashtable_size() const
virtual void train(idx_t n, const uint8_t *x)

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct(idx_t key, uint8_t *recons) const

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

InvertedListMap invlists
int b
int nflip
int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct InvertedList

Public Functions

void add(idx_t id, size_t code_size, const uint8_t *code)

Public Members

std::vector<idx_t> ids
std::vector<uint8_t> vecs
struct IndexBinaryHashStats

Public Functions

inline IndexBinaryHashStats()
void reset()

Public Members

size_t nq
size_t n0
size_t nlist
size_t ndis
struct IndexBinaryMultiHash : public faiss::IndexBinary
#include <IndexBinaryHash.h>

just uses the b first bits as a hash value

Public Types

using Map = std::unordered_map<idx_t, std::vector<idx_t>>
using component_t = uint8_t
using distance_t = int32_t

Public Functions

IndexBinaryMultiHash(int d, int nhash, int b)
IndexBinaryMultiHash()
~IndexBinaryMultiHash()
virtual void reset() override

Removes all elements from the database.

virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

size_t hashtable_size() const
virtual void train(idx_t n, const uint8_t *x)

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct(idx_t key, uint8_t *recons) const

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

IndexBinaryFlat *storage
bool own_fields
std::vector<Map> maps
int nhash

nb of hash maps

int b

nb bits per hash map

int nflip

nb bit flips to use at search time

int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct IndexBinaryHNSW : public faiss::IndexBinary
#include <IndexBinaryHNSW.h>

The HNSW index is a normal random-access index with a HNSW link structure built on top

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = uint8_t
using distance_t = int32_t

Public Functions

explicit IndexBinaryHNSW()
explicit IndexBinaryHNSW(int d, int M = 32)
explicit IndexBinaryHNSW(IndexBinary *storage, int M = 32)
~IndexBinaryHNSW() override
DistanceComputer *get_distance_computer() const
virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void train(idx_t n, const uint8_t *x) override

Trains the storage if needed.

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, uint8_t *recons) const override

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reset() override

Removes all elements from the database.

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

HNSW hnsw
bool own_fields
IndexBinary *storage
int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct IndexBinaryIVF : public faiss::IndexBinary
#include <IndexBinaryIVF.h>

Index based on a inverted file (IVF)

In the inverted file, the quantizer (an IndexBinary instance) provides a quantization index for each vector to be added. The quantization index maps to a list (aka inverted list or posting list), where the id of the vector is stored.

Otherwise the object is similar to the IndexIVF

Public Types

using component_t = uint8_t
using distance_t = int32_t

Public Functions

IndexBinaryIVF(IndexBinary *quantizer, size_t d, size_t nlist)

The Inverted file takes a quantizer (an IndexBinary) on input, which implements the function mapping a vector to a list identifier. The pointer is borrowed: the quantizer should not be deleted while the IndexBinaryIVF is in use.

IndexBinaryIVF()
~IndexBinaryIVF() override
virtual void reset() override

Removes all elements from the database.

virtual void train(idx_t n, const uint8_t *x) override

Trains the quantizer.

virtual void add(idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids) override

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

void add_core(idx_t n, const uint8_t *x, const idx_t *xids, const idx_t *precomputed_idx)

Implementation of vector addition where the vector assignments are predefined.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

void search_preassigned(idx_t n, const uint8_t *x, idx_t k, const idx_t *assign, const int32_t *centroid_dis, int32_t *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr) const

Search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. search() calls this.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

virtual BinaryInvertedListScanner *get_InvertedListScanner(bool store_pairs = false) const
virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

void range_search_preassigned(idx_t n, const uint8_t *x, int radius, const idx_t *assign, const int32_t *centroid_dis, RangeSearchResult *result) const
virtual void reconstruct(idx_t key, uint8_t *recons) const override

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d / 8

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d / 8)

virtual void reconstruct_from_offset(idx_t list_no, idx_t offset, uint8_t *recons) const

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void merge_from(IndexBinary &other, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

inline size_t get_list_size(size_t list_no) const
void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)
void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

void display() const

Display the actual class name and some more info.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = true
size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

bool use_heap = true

Select between using a heap or counting to select the k smallest values when scanning inverted lists.

bool per_invlist_search = false

collect computations per batch

DirectMap direct_map

map for direct access to the elements. Enables reconstruct().

IndexBinary *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of possible key values

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

struct BinaryInvertedListScanner

Public Functions

virtual void set_query(const uint8_t *query_vector) = 0

from now on we handle this query.

virtual void set_list(idx_t list_no, uint8_t coarse_dis) = 0

following codes come from this inverted list

virtual uint32_t distance_to_code(const uint8_t *code) const = 0

compute a single query-to-code distance

virtual size_t scan_codes(size_t n, const uint8_t *codes, const idx_t *ids, int32_t *distances, idx_t *labels, size_t k) const = 0

compute the distances to codes. (distances, labels) should be organized as a min- or max-heap

Parameters:
  • n – number of codes to scan

  • codes – codes to scan (n * code_size)

  • ids – corresponding ids (ignored if store_pairs)

  • distances – heap distances (size k)

  • labels – heap labels (size k)

  • k – heap size

virtual void scan_codes_range(size_t n, const uint8_t *codes, const idx_t *ids, int radius, RangeQueryResult &result) const = 0
inline virtual ~BinaryInvertedListScanner()
struct IndexFastScan : public faiss::Index
#include <IndexFastScan.h>

Fast scan version of IndexPQ and IndexAQ. Works for 4-bit PQ and AQ for now.

The codes are not stored sequentially but grouped in blocks of size bbs. This makes it possible to compute distances quickly with SIMD instructions. The trailing codes (padding codes that are added to complete the last code) are garbage.

Implementations: 12: blocked loop with internal loop on Q with qbs 13: same with reservoir accumulator to store results 14: no qbs with heap accumulator 15: no qbs with reservoir accumulator

Subclassed by faiss::IndexAdditiveQuantizerFastScan, faiss::IndexPQFastScan

Public Types

using component_t = float
using distance_t = float

Public Functions

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
IndexFastScan()
virtual void reset() override

removes all elements from the database.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const = 0
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const = 0
void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct FastScanStats

Public Functions

inline FastScanStats()
inline void reset()

Public Members

uint64_t t0
uint64_t t1
uint64_t t2
uint64_t t3
struct IndexFlat : public faiss::IndexFlatCodes
#include <IndexFlat.h>

Index that stores the full vectors and performs exhaustive search

Subclassed by faiss::IndexFlatIP, faiss::IndexFlatL2

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexFlat(idx_t d, MetricType metric = METRIC_L2)
Parameters:

d – dimensionality of the input vectors

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

void compute_distance_subset(idx_t n, const float *x, idx_t k, float *distances, const idx_t *labels) const

compute distance with a subset of vectors

Parameters:
  • x – query vectors, size n * d

  • labels – indices of the vectors that should be compared for each query vector, size n * k

  • distances – corresponding output distances, size n * k

inline float *get_xb()
inline const float *get_xb() const
inline IndexFlat()
virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexFlatIP : public faiss::IndexFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

inline explicit IndexFlatIP(idx_t d)
inline IndexFlatIP()
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

void compute_distance_subset(idx_t n, const float *x, idx_t k, float *distances, const idx_t *labels) const

compute distance with a subset of vectors

Parameters:
  • x – query vectors, size n * d

  • labels – indices of the vectors that should be compared for each query vector, size n * k

  • distances – corresponding output distances, size n * k

inline float *get_xb()
inline const float *get_xb() const
virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexFlatL2 : public faiss::IndexFlat

Subclassed by faiss::IndexFlat1D

Public Types

using component_t = float
using distance_t = float

Public Functions

inline explicit IndexFlatL2(idx_t d)
Parameters:

d – dimensionality of the input vectors

inline IndexFlatL2()
virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

void sync_l2norms()
void clear_l2norms()
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

void compute_distance_subset(idx_t n, const float *x, idx_t k, float *distances, const idx_t *labels) const

compute distance with a subset of vectors

Parameters:
  • x – query vectors, size n * d

  • labels – indices of the vectors that should be compared for each query vector, size n * k

  • distances – corresponding output distances, size n * k

inline float *get_xb()
inline const float *get_xb() const
virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

std::vector<float> cached_l2norms
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexFlat1D : public faiss::IndexFlatL2
#include <IndexFlat.h>

optimized version for 1D “vectors”.

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexFlat1D(bool continuous_update = true)
void update_permutation()

if not continuous_update, call this between the last add and the first search

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void reset() override

removes all elements from the database.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Warn: the distances returned are L1 not L2.

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

void sync_l2norms()
void clear_l2norms()
virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

void compute_distance_subset(idx_t n, const float *x, idx_t k, float *distances, const idx_t *labels) const

compute distance with a subset of vectors

Parameters:
  • x – query vectors, size n * d

  • labels – indices of the vectors that should be compared for each query vector, size n * k

  • distances – corresponding output distances, size n * k

inline float *get_xb()
inline const float *get_xb() const
virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

bool continuous_update = true

is the permutation updated continuously?

std::vector<idx_t> perm

sorted database indices

std::vector<float> cached_l2norms
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexFlatCodes : public faiss::Index
#include <IndexFlatCodes.h>

Index that encodes all vectors as fixed-size codes (size code_size). Storage is in the codes vector

Subclassed by faiss::Index2Layer, faiss::IndexAdditiveQuantizer, faiss::IndexFlat, faiss::IndexLSH, faiss::IndexLattice, faiss::IndexNeuralNetCodec, faiss::IndexPQ, faiss::IndexScalarQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexFlatCodes()
IndexFlatCodes(size_t code_size, idx_t d, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

Public Members

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSW : public faiss::Index
#include <IndexHNSW.h>

The HNSW index is a normal random-access index with a HNSW link structure built on top

Subclassed by faiss::IndexHNSW2Level, faiss::IndexHNSWCagra, faiss::IndexHNSWFlat, faiss::IndexHNSWPQ, faiss::IndexHNSWSQ

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

explicit IndexHNSW(int d = 0, int M = 32, MetricType metric = METRIC_L2)
explicit IndexHNSW(Index *storage, int M = 32)
~IndexHNSW() override
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSWFlat : public faiss::IndexHNSW
#include <IndexHNSW.h>

Flat index topped with with a HNSW structure to access elements more efficiently.

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexHNSWFlat()
IndexHNSWFlat(int d, int M, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSWPQ : public faiss::IndexHNSW
#include <IndexHNSW.h>

PQ index topped with with a HNSW structure to access elements more efficiently.

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexHNSWPQ()
IndexHNSWPQ(int d, int pq_m, int M, int pq_nbits = 8, MetricType metric = METRIC_L2)
virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSWSQ : public faiss::IndexHNSW
#include <IndexHNSW.h>

SQ index topped with with a HNSW structure to access elements more efficiently.

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexHNSWSQ()
IndexHNSWSQ(int d, ScalarQuantizer::QuantizerType qtype, int M, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSW2Level : public faiss::IndexHNSW
#include <IndexHNSW.h>

2-level code structure with fast random access

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexHNSW2Level()
IndexHNSW2Level(Index *quantizer, size_t nlist, int m_pq, int M)
void flip_to_ivf()
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexHNSWCagra : public faiss::IndexHNSW

Public Types

typedef HNSW::storage_idx_t storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexHNSWCagra()
IndexHNSWCagra(int d, int M, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void shrink_level_0_neighbors(int size)
void search_level_0(idx_t n, const float *x, idx_t k, const storage_idx_t *nearest, const float *nearest_d, float *distances, idx_t *labels, int nprobe = 1, int search_type = 1, const SearchParameters *params = nullptr) const

Perform search only on level 0, given the starting points for each vertex.

Parameters:

search_type – 1:perform one search per nprobe, 2: enqueue all entry points

void init_level_0_from_knngraph(int k, const float *D, const idx_t *I)

alternative graph building

void init_level_0_from_entry_points(int npt, const storage_idx_t *points, const storage_idx_t *nearests)

alternative graph building

void reorder_links()
void permute_entries(const idx_t *perm)
virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

bool base_level_only = false

When set to true, the index is immutable. This option is used to copy the knn graph from GpuIndexCagra to the base level of IndexHNSWCagra without adding upper levels. Doing so enables to search the HNSW index, but removes the ability to add vectors.

int num_base_level_search_entrypoints = 32

When base_level_only is set to True, the search function searches only the base level knn graph of the HNSW index. This parameter selects the entry point by randomly selecting some points and using the best one.

HNSW hnsw
bool own_fields = false
Index *storage = nullptr
bool init_level0 = true
bool keep_max_size_level0 = false
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

template<typename IndexT>
struct IndexIDMapTemplate : public IndexT
#include <IndexIDMap.h>

Index that translates search results to ids

Subclassed by faiss::IndexIDMap2Template< IndexT >

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexIDMapTemplate(IndexT *index)
void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override
Parameters:

xids – if non-null, ids to store for the vectors (size n)

void add(idx_t n, const component_t *x) override

this will fail. Use add_with_ids

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
void train(idx_t n, const component_t *x) override
void reset() override
size_t remove_ids(const IDSelector &sel) override

remove ids adapted to IndexFlat

void range_search(idx_t n, const component_t *x, distance_t radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override
void merge_from(IndexT &otherIndex, idx_t add_id = 0) override
void check_compatible_for_merge(const IndexT &otherIndex) const override
size_t sa_code_size() const override
void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override
~IndexIDMapTemplate() override
inline IndexIDMapTemplate()

Public Members

IndexT *index = nullptr
bool own_fields = false

! the sub-index

std::vector<idx_t> id_map

! whether pointers are deleted in destructo

template<typename IndexT>
struct IndexIDMap2Template : public faiss::IndexIDMapTemplate<IndexT>
#include <IndexIDMap.h>

same as IndexIDMap but also provides an efficient reconstruction implementation via a 2-way index

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexIDMap2Template(IndexT *index)
void construct_rev_map()

make the rev_map from scratch

void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override
size_t remove_ids(const IDSelector &sel) override
void reconstruct(idx_t key, component_t *recons) const override
void check_consistency() const

check that the rev_map and the id_map are in sync

void merge_from(IndexT &otherIndex, idx_t add_id = 0) override
inline ~IndexIDMap2Template() override
inline IndexIDMap2Template()
void add(idx_t n, const component_t *x) override

this will fail. Use add_with_ids

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
void train(idx_t n, const component_t *x) override
void reset() override
void range_search(idx_t n, const component_t *x, distance_t radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override
void check_compatible_for_merge(const IndexT &otherIndex) const override
size_t sa_code_size() const override
void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Public Members

std::unordered_map<idx_t, idx_t> rev_map
IndexT *index = nullptr
bool own_fields = false

! the sub-index

std::vector<idx_t> id_map

! whether pointers are deleted in destructo

struct IDSelectorTranslated : public faiss::IDSelector

Public Functions

inline IDSelectorTranslated(const std::vector<int64_t> &id_map, const IDSelector *sel)
inline IDSelectorTranslated(IndexBinaryIDMap &index_idmap, const IDSelector *sel)
inline IDSelectorTranslated(IndexIDMap &index_idmap, const IDSelector *sel)
inline virtual bool is_member(idx_t id) const override

Public Members

const std::vector<int64_t> &id_map
const IDSelector *sel
struct Level1Quantizer
#include <IndexIVF.h>

Encapsulates a quantizer object for the IndexIVF

The class isolates the fields that are independent of the storage of the lists (especially training)

Subclassed by faiss::IndexIVFInterface, faiss::IndexShardsIVF

Public Functions

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const
Level1Quantizer(Index *quantizer, size_t nlist)
Level1Quantizer()
~Level1Quantizer()

Public Members

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct SearchParametersIVF : public faiss::SearchParameters

Subclassed by faiss::IVFPQSearchParameters

Public Functions

inline virtual ~SearchParametersIVF()

Public Members

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

SearchParameters *quantizer_params = nullptr
void *inverted_list_context = nullptr

context object to pass to InvertedLists

IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct IndexIVFInterface : public faiss::Level1Quantizer

Subclassed by faiss::IndexIVF, faiss::gpu::GpuIndexIVF

Public Functions

inline explicit IndexIVFInterface(Index *quantizer = nullptr, size_t nlist = 0)
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const = 0

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const = 0

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

inline virtual ~IndexIVFInterface()
void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVF : public faiss::Index, public faiss::IndexIVFInterface
#include <IndexIVF.h>

Index based on a inverted file (IVF)

In the inverted file, the quantizer (an Index instance) provides a quantization index for each vector to be added. The quantization index maps to a list (aka inverted list or posting list), where the id of the vector is stored.

The inverted list object is required only after trainng. If none is set externally, an ArrayInvertedLists is used automatically.

At search time, the vector to be searched is also quantized, and only the list corresponding to the quantization index is searched. This speeds up the search by making it non-exhaustive. This can be relaxed using multi-probe search: a few (nprobe) quantization indices are selected and several inverted lists are visited.

Sub-classes implement a post-filtering of the index that refines the distance estimation from the query to databse vectors.

Subclassed by faiss::IndexIVFAdditiveQuantizer, faiss::IndexIVFFastScan, faiss::IndexIVFFlat, faiss::IndexIVFPQ, faiss::IndexIVFScalarQuantizer, faiss::IndexIVFSpectralHash

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVF(Index *quantizer, size_t d, size_t nlist, size_t code_size, MetricType metric = METRIC_L2)

The Inverted file takes a quantizer (an Index) on input, which implements the function mapping a vector to a list identifier.

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const = 0

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign)

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const

can be redefined by subclasses to indicate how many training vectors they need

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

~IndexIVF() override
inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

IndexIVF()
virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct InvertedListScanner
#include <IndexIVF.h>

Object that handles a query. The inverted lists to scan are provided externally. The object has a lot of state, but distance_to_code and scan_codes can be called in multiple threads

Public Functions

inline InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr)
virtual void set_query(const float *query_vector) = 0

from now on we handle this query.

virtual void set_list(idx_t list_no, float coarse_dis) = 0

following codes come from this inverted list

virtual float distance_to_code(const uint8_t *code) const = 0

compute a single query-to-code distance

virtual size_t scan_codes(size_t n, const uint8_t *codes, const idx_t *ids, float *distances, idx_t *labels, size_t k) const

scan a set of codes, compute distances to current query and update heap of results if necessary. Default implementation calls distance_to_code.

Parameters:
  • n – number of codes to scan

  • codes – codes to scan (n * code_size)

  • ids – corresponding ids (ignored if store_pairs)

  • distances – heap distances (size k)

  • labels – heap labels (size k)

  • k – heap size

Returns:

number of heap updates performed

virtual size_t iterate_codes(InvertedListsIterator *iterator, float *distances, idx_t *labels, size_t k, size_t &list_size) const
virtual void scan_codes_range(size_t n, const uint8_t *codes, const idx_t *ids, float radius, RangeQueryResult &result) const

scan a set of codes, compute distances to current query and update results if distances are below radius

(default implementation fails)

virtual void iterate_codes_range(InvertedListsIterator *iterator, float radius, RangeQueryResult &result, size_t &list_size) const
inline virtual ~InvertedListScanner()

Public Members

idx_t list_no = -1

remember current list

bool keep_max = false

keep maximum instead of minimum

bool store_pairs

store positions in invlists rather than labels

const IDSelector *sel

search in this subset of ids

size_t code_size = 0

used in default implementation of scan_codes

struct IndexIVFStats

Public Functions

inline IndexIVFStats()
void reset()
void add(const IndexIVFStats &other)

Public Members

size_t nq
size_t nlist
size_t ndis
size_t nheap_updates
double quantization_time
double search_time
struct IndexIVFAdditiveQuantizer : public faiss::IndexIVF
#include <IndexIVFAdditiveQuantizer.h>

Abstract class for IVF additive quantizers. The search functions are in common.

Subclassed by faiss::IndexIVFLocalSearchQuantizer, faiss::IndexIVFProductLocalSearchQuantizer, faiss::IndexIVFProductResidualQuantizer, faiss::IndexIVFResidualQuantizer

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFAdditiveQuantizer(AdditiveQuantizer *aq, Index *quantizer, size_t d, size_t nlist, MetricType metric = METRIC_L2)
explicit IndexIVFAdditiveQuantizer(AdditiveQuantizer *aq)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

~IndexIVFAdditiveQuantizer() override
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

AdditiveQuantizer *aq
int use_precomputed_table = 0
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFResidualQuantizer : public faiss::IndexIVFAdditiveQuantizer
#include <IndexIVFAdditiveQuantizer.h>

IndexIVF based on a residual quantizer. Stored vectors are approximated by residual quantization codes.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFResidualQuantizer(Index *quantizer, size_t d, size_t nlist, const std::vector<size_t> &nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexIVFResidualQuantizer(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)
IndexIVFResidualQuantizer()
virtual ~IndexIVFResidualQuantizer()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ResidualQuantizer rq

The residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
int use_precomputed_table = 0
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFLocalSearchQuantizer : public faiss::IndexIVFAdditiveQuantizer
#include <IndexIVFAdditiveQuantizer.h>

IndexIVF based on a residual quantizer. Stored vectors are approximated by residual quantization codes.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFLocalSearchQuantizer(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexIVFLocalSearchQuantizer()
virtual ~IndexIVFLocalSearchQuantizer()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

LocalSearchQuantizer lsq

The LSQ quantizer used to encode the vectors.

AdditiveQuantizer *aq
int use_precomputed_table = 0
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFProductResidualQuantizer : public faiss::IndexIVFAdditiveQuantizer
#include <IndexIVFAdditiveQuantizer.h>

IndexIVF based on a product residual quantizer. Stored vectors are approximated by product residual quantization codes.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFProductResidualQuantizer(Index *quantizer, size_t d, size_t nlist, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of residual quantizers

  • Msub – number of subquantizers per RQ

  • nbits – number of bit per subvector index

IndexIVFProductResidualQuantizer()
virtual ~IndexIVFProductResidualQuantizer()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductResidualQuantizer prq

The product residual quantizer used to encode the vectors.

AdditiveQuantizer *aq
int use_precomputed_table = 0
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFProductLocalSearchQuantizer : public faiss::IndexIVFAdditiveQuantizer
#include <IndexIVFAdditiveQuantizer.h>

IndexIVF based on a product local search quantizer. Stored vectors are approximated by product local search quantization codes.

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFProductLocalSearchQuantizer(Index *quantizer, size_t d, size_t nlist, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_decompress)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • nsplits – number of local search quantizers

  • Msub – number of subquantizers per LSQ

  • nbits – number of bit per subvector index

IndexIVFProductLocalSearchQuantizer()
virtual ~IndexIVFProductLocalSearchQuantizer()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductLocalSearchQuantizer plsq

The product local search quantizer used to encode the vectors.

AdditiveQuantizer *aq
int use_precomputed_table = 0
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFAdditiveQuantizerFastScan : public faiss::IndexIVFFastScan
#include <IndexIVFAdditiveQuantizerFastScan.h>

Fast scan version of IVFAQ. Works for 4-bit AQ for now.

The codes in the inverted lists are not stored sequentially but grouped in blocks of size bbs. This makes it possible to very quickly compute distances with SIMD instructions.

Implementations (implem): 0: auto-select implementation (default) 1: orig’s search, re-implemented 2: orig’s search, re-ordered by invlist 10: optimizer int16 search, collect results in heap, no qbs 11: idem, collect results in reservoir 12: optimizer int16 search, collect results in heap, uses qbs 13: idem, collect results in reservoir

Subclassed by faiss::IndexIVFLocalSearchQuantizerFastScan, faiss::IndexIVFProductLocalSearchQuantizerFastScan, faiss::IndexIVFProductResidualQuantizerFastScan, faiss::IndexIVFResidualQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFAdditiveQuantizerFastScan(Index *quantizer, AdditiveQuantizer *aq, size_t d, size_t nlist, MetricType metric = METRIC_L2, int bbs = 32)
void init(AdditiveQuantizer *aq, size_t nlist, MetricType metric, int bbs)
IndexIVFAdditiveQuantizerFastScan()
~IndexIVFAdditiveQuantizerFastScan() override
explicit IndexIVFAdditiveQuantizerFastScan(const IndexIVFAdditiveQuantizer &orig, int bbs = 32)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void estimate_norm_scale(idx_t n, const float *x)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFAQ encoder. The codes are not reorganized by blocks a that point

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

AdditiveQuantizer *aq
bool rescale_norm = false
int norm_scale = 1
size_t max_train_points
int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFLocalSearchQuantizerFastScan : public faiss::IndexIVFAdditiveQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFLocalSearchQuantizerFastScan(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_lsq2x4, int bbs = 32)
IndexIVFLocalSearchQuantizerFastScan()
void init(AdditiveQuantizer *aq, size_t nlist, MetricType metric, int bbs)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void estimate_norm_scale(idx_t n, const float *x)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFAQ encoder. The codes are not reorganized by blocks a that point

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

LocalSearchQuantizer lsq
AdditiveQuantizer *aq
bool rescale_norm = false
int norm_scale = 1
size_t max_train_points
int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFResidualQuantizerFastScan : public faiss::IndexIVFAdditiveQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFResidualQuantizerFastScan(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_lsq2x4, int bbs = 32)
IndexIVFResidualQuantizerFastScan()
void init(AdditiveQuantizer *aq, size_t nlist, MetricType metric, int bbs)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void estimate_norm_scale(idx_t n, const float *x)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFAQ encoder. The codes are not reorganized by blocks a that point

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ResidualQuantizer rq
AdditiveQuantizer *aq
bool rescale_norm = false
int norm_scale = 1
size_t max_train_points
int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFProductLocalSearchQuantizerFastScan : public faiss::IndexIVFAdditiveQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFProductLocalSearchQuantizerFastScan(Index *quantizer, size_t d, size_t nlist, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_lsq2x4, int bbs = 32)
IndexIVFProductLocalSearchQuantizerFastScan()
void init(AdditiveQuantizer *aq, size_t nlist, MetricType metric, int bbs)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void estimate_norm_scale(idx_t n, const float *x)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFAQ encoder. The codes are not reorganized by blocks a that point

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductLocalSearchQuantizer plsq
AdditiveQuantizer *aq
bool rescale_norm = false
int norm_scale = 1
size_t max_train_points
int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFProductResidualQuantizerFastScan : public faiss::IndexIVFAdditiveQuantizerFastScan

Public Types

using Search_type_t = AdditiveQuantizer::Search_type_t
using component_t = float
using distance_t = float

Public Functions

IndexIVFProductResidualQuantizerFastScan(Index *quantizer, size_t d, size_t nlist, size_t nsplits, size_t Msub, size_t nbits, MetricType metric = METRIC_L2, Search_type_t search_type = AdditiveQuantizer::ST_norm_lsq2x4, int bbs = 32)
IndexIVFProductResidualQuantizerFastScan()
void init(AdditiveQuantizer *aq, size_t nlist, MetricType metric, int bbs)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void estimate_norm_scale(idx_t n, const float *x)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFAQ encoder. The codes are not reorganized by blocks a that point

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductResidualQuantizer prq
AdditiveQuantizer *aq
bool rescale_norm = false
int norm_scale = 1
size_t max_train_points
int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFFastScan : public faiss::IndexIVF
#include <IndexIVFFastScan.h>

Fast scan version of IVFPQ and IVFAQ. Works for 4-bit PQ/AQ for now.

The codes in the inverted lists are not stored sequentially but grouped in blocks of size bbs. This makes it possible to very quickly compute distances with SIMD instructions.

Implementations (implem): 0: auto-select implementation (default) 1: orig’s search, re-implemented 2: orig’s search, re-ordered by invlist 10: optimizer int16 search, collect results in heap, no qbs 11: idem, collect results in reservoir 12: optimizer int16 search, collect results in heap, uses qbs 13: idem, collect results in reservoir 14: internally multithreaded implem over nq * nprobe 15: same with reservoir

For range search, only 10 and 12 are supported. add 100 to the implem to force single-thread scanning (the coarse quantizer may still use multiple threads).

Subclassed by faiss::IndexIVFAdditiveQuantizerFastScan, faiss::IndexIVFPQFastScan

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFFastScan(Index *quantizer, size_t d, size_t nlist, size_t code_size, MetricType metric = METRIC_L2)
IndexIVFFastScan()
void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
~IndexIVFFastScan() override
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual bool lookup_table_is_3d() const = 0
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const = 0
void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const = 0

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign)

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const

can be redefined by subclasses to indicate how many training vectors they need

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct CoarseQuantized

Public Members

size_t nprobe
const float *dis = nullptr
const idx_t *ids = nullptr
struct IVFFastScanStats

Public Functions

inline double Mcy_at(int i)
inline double Mcy_reservoir_at(int i)
inline IVFFastScanStats()
inline void reset()

Public Members

uint64_t times[10]
uint64_t t_compute_distance_tables
uint64_t t_round
uint64_t t_copy_pack
uint64_t t_scan
uint64_t t_to_flat
uint64_t reservoir_times[4]
double t_aq_encode
double t_aq_norm_encode
struct IndexIVFFlat : public faiss::IndexIVF
#include <IndexIVFFlat.h>

Inverted file with stored vectors. Here the inverted file pre-selects the vectors to be searched, but they are not otherwise encoded, the code array just contains the raw float entries.

Subclassed by faiss::IndexIVFFlatDedup

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFFlat(Index *quantizer, size_t d, size_t nlist_, MetricType = METRIC_L2)
virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

IndexIVFFlat()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign)

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const

can be redefined by subclasses to indicate how many training vectors they need

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFFlatDedup : public faiss::IndexIVFFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFFlatDedup(Index *quantizer, size_t d, size_t nlist_, MetricType = METRIC_L2)
virtual void train(idx_t n, const float *x) override

also dedups the training set

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

implemented for all IndexIVF* classes

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

not implemented

virtual void update_vectors(int nv, const idx_t *idx, const float *v) override

not implemented

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

not implemented

inline IndexIVFFlatDedup()
virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reset() override

removes all elements from the database.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign)

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const

can be redefined by subclasses to indicate how many training vectors they need

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

std::unordered_multimap<idx_t, idx_t> instances

Maps ids stored in the index to the ids of vectors that are the same. When a vector is unique, it does not appear in the instances map

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFIndependentQuantizer : public faiss::Index
#include <IndexIVFIndependentQuantizer.h>

An IVF index with a quantizer that has a different input dimension from the payload size. The vectors to encode are obtained from the input vectors by a VectorTransform.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFIndependentQuantizer(Index *quantizer, IndexIVF *index_ivf, VectorTransform *vt = nullptr)
inline IndexIVFIndependentQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reset() override

removes all elements from the database.

~IndexIVFIndependentQuantizer() override
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *quantizer = nullptr

quantizer is fed directly with the input vectors

VectorTransform *vt = nullptr

transform before the IVF vectors are applied

IndexIVF *index_ivf = nullptr

the IVF index, controls nlist and nprobe

bool own_fields = false

whether *this owns the 3 fields

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IVFPQSearchParameters : public faiss::SearchParametersIVF

Public Functions

inline IVFPQSearchParameters()
inline ~IVFPQSearchParameters()

Public Members

size_t scan_table_threshold

use table computation or on-the-fly?

int polysemous_ht

Hamming thresh for polysemous filtering.

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

SearchParameters *quantizer_params = nullptr
void *inverted_list_context = nullptr

context object to pass to InvertedLists

IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct IndexIVFPQ : public faiss::IndexIVF
#include <IndexIVFPQ.h>

Inverted file with Product Quantizer encoding. Each residual vector is encoded as a product quantizer code.

Subclassed by faiss::IndexIVFPQR

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFPQ(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits_per_idx, MetricType metric = METRIC_L2)
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

void add_core_o(idx_t n, const float *x, const idx_t *xids, float *residuals_2, const idx_t *precomputed_idx = nullptr, void *inverted_list_context = nullptr)

same as add_core, also:

  • output 2nd level residuals if residuals_2 != NULL

  • accepts precomputed_idx = nullptr

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

trains the product quantizer

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

size_t find_duplicates(idx_t *ids, size_t *lims) const

Find exact duplicates in the dataset.

the duplicates are returned in pre-allocated arrays (see the max sizes).

Parameters:
  • lims – limits between groups of duplicates (max size ntotal / 2 + 1)

  • ids – ids[lims[i]] : ids[lims[i+1]-1] is a group of duplicates (max size ntotal)

Returns:

n number of groups found

void encode(idx_t key, const float *x, uint8_t *code) const
void encode_multiple(size_t n, idx_t *keys, const float *x, uint8_t *codes, bool compute_keys = false) const

Encode multiple vectors

Parameters:
  • n – nb vectors to encode

  • keys – posting list ids for those vectors (size n)

  • x – vectors (size n * d)

  • codes – output codes (size n * code_size)

  • compute_keys – if false, assume keys are precomputed, otherwise compute them

void decode_multiple(size_t n, const idx_t *keys, const uint8_t *xcodes, float *x) const

inverse of encode_multiple

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

void precompute_table()

build precomputed table

IndexIVFPQ()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductQuantizer pq

produces the codes

bool do_polysemous_training

reorder PQ centroids after training?

PolysemousTraining *polysemous_training

if NULL, use default

size_t scan_table_threshold

use table computation or on-the-fly?

int polysemous_ht

Hamming thresh for polysemous filtering.

int use_precomputed_table

Precompute table that speed up query preprocessing at some memory cost (used only for by_residual with L2 metric)

AlignedTable<float> precomputed_table

if use_precompute_table size nlist * pq.M * pq.ksub

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFPQStats
#include <IndexIVFPQ.h>

statistics are robust to internal threading, but not if IndexIVFPQ::search_preassigned is called by multiple threads

Public Functions

inline IndexIVFPQStats()
void reset()

Public Members

size_t nrefine

nb of refines (IVFPQR)

size_t n_hamming_pass

nb of passed Hamming distance tests (for polysemous)

size_t search_cycles
size_t refine_cycles

only for IVFPQR

struct IndexIVFPQFastScan : public faiss::IndexIVFFastScan
#include <IndexIVFPQFastScan.h>

Fast scan version of IVFPQ. Works for 4-bit PQ for now.

The codes in the inverted lists are not stored sequentially but grouped in blocks of size bbs. This makes it possible to very quickly compute distances with SIMD instructions.

Implementations (implem): 0: auto-select implementation (default) 1: orig’s search, re-implemented 2: orig’s search, re-ordered by invlist 10: optimizer int16 search, collect results in heap, no qbs 11: idem, collect results in reservoir 12: optimizer int16 search, collect results in heap, uses qbs 13: idem, collect results in reservoir

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFPQFastScan(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits, MetricType metric = METRIC_L2, int bbs = 32)
IndexIVFPQFastScan()
explicit IndexIVFPQFastScan(const IndexIVFPQ &orig, int bbs = 32)
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

void precompute_table()

build precomputed table, possibly updating use_precomputed_table

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listno = false) const override

same as the regular IVFPQ encoder. The codes are not reorganized by blocks a that point

virtual bool lookup_table_is_3d() const override
virtual void compute_LUT(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<float> &dis_tables, AlignedTable<float> &biases) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void init_fastscan(size_t M, size_t nbits, size_t nlist, MetricType metric, int bbs)
void init_code_packer()
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

void compute_LUT_uint8(size_t n, const float *x, const CoarseQuantized &cq, AlignedTable<uint8_t> &dis_tables, AlignedTable<uint16_t> &biases, float *normalizers) const
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void range_search_dispatch_implem(idx_t n, const float *x, float radius, RangeSearchResult &rres, const CoarseQuantized &cq_in, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_1(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
template<class C>
void search_implem_2(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_10(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_12(idx_t n, const float *x, SIMDResultHandlerToFloat &handler, const CoarseQuantized &cq, size_t *ndis_out, size_t *nlist_out, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const CoarseQuantized &cq, int impl, const NormTableScaler *scaler, const IVFSearchParameters *params = nullptr) const
virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual CodePacker *get_CodePacker() const override
void reconstruct_orig_invlists()
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs = false, const IDSelector *sel = nullptr) const

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductQuantizer pq

produces the codes

int use_precomputed_table = 0

precomputed tables management

AlignedTable<float> precomputed_table

if use_precompute_table size (nlist, pq.M, pq.ksub)

int bbs
size_t M
size_t nbits
size_t ksub
size_t M2
int implem = 0
int skip = 0
int qbs = 0
size_t qbs2 = 0
InvertedLists *orig_invlists = nullptr

orig’s inverted lists (for debugging)

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFPQR : public faiss::IndexIVFPQ
#include <IndexIVFPQR.h>

Index with an additional level of PQ refinement

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFPQR(Index *quantizer, size_t d, size_t nlist, size_t M, size_t nbits_per_idx, size_t M_refine, size_t nbits_per_idx_refine)
virtual void reset() override

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

trains the two product quantizers

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

same as add_with_ids, but optionally use the precomputed list ids

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

IndexIVFPQR()
virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void add_core_o(idx_t n, const float *x, const idx_t *xids, float *residuals_2, const idx_t *precomputed_idx = nullptr, void *inverted_list_context = nullptr)

same as add_core, also:

  • output 2nd level residuals if residuals_2 != NULL

  • accepts precomputed_idx = nullptr

size_t find_duplicates(idx_t *ids, size_t *lims) const

Find exact duplicates in the dataset.

the duplicates are returned in pre-allocated arrays (see the max sizes).

Parameters:
  • lims – limits between groups of duplicates (max size ntotal / 2 + 1)

  • ids – ids[lims[i]] : ids[lims[i+1]-1] is a group of duplicates (max size ntotal)

Returns:

n number of groups found

void encode(idx_t key, const float *x, uint8_t *code) const
void encode_multiple(size_t n, idx_t *keys, const float *x, uint8_t *codes, bool compute_keys = false) const

Encode multiple vectors

Parameters:
  • n – nb vectors to encode

  • keys – posting list ids for those vectors (size n)

  • x – vectors (size n * d)

  • codes – output codes (size n * code_size)

  • compute_keys – if false, assume keys are precomputed, otherwise compute them

void decode_multiple(size_t n, const idx_t *keys, const uint8_t *xcodes, float *x) const

inverse of encode_multiple

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

void precompute_table()

build precomputed table

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductQuantizer refine_pq

3rd level quantizer

std::vector<uint8_t> refine_codes

corresponding codes

float k_factor

factor between k requested in search and the k requested from the IVFPQ

ProductQuantizer pq

produces the codes

bool do_polysemous_training

reorder PQ centroids after training?

PolysemousTraining *polysemous_training

if NULL, use default

size_t scan_table_threshold

use table computation or on-the-fly?

int polysemous_ht

Hamming thresh for polysemous filtering.

int use_precomputed_table

Precompute table that speed up query preprocessing at some memory cost (used only for by_residual with L2 metric)

AlignedTable<float> precomputed_table

if use_precompute_table size nlist * pq.M * pq.ksub

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexIVFSpectralHash : public faiss::IndexIVF
#include <IndexIVFSpectralHash.h>

Inverted list that stores binary codes of size nbit. Before the binary conversion, the dimension of the vectors is transformed from dim d into dim nbit by vt (a random rotation by default).

Each coordinate is subtracted from a value determined by threshold_type, and split into intervals of size period. Half of the interval is a 0 bit, the other half a 1.

Public Types

enum ThresholdType

Values:

enumerator Thresh_global

global threshold at 0

enumerator Thresh_centroid

compare to centroid

enumerator Thresh_centroid_half

central interval around centroid

enumerator Thresh_median

median of training set

using component_t = float
using distance_t = float

Public Functions

IndexIVFSpectralHash(Index *quantizer, size_t d, size_t nlist, int nbit, float period)
IndexIVFSpectralHash()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

void replace_vt(VectorTransform *vt, bool own = false)

replace the vector transform for an empty (and possibly untrained) index

void replace_vt(IndexPreTransform *index, bool own = false)

convenience function to get the VT from an index constucted by an index_factory (should end in “LSH”)

~IndexIVFSpectralHash() override
virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr)

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual idx_t train_encoder_num_vectors() const

can be redefined by subclasses to indicate how many training vectors they need

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

VectorTransform *vt = nullptr

transformation from d to nbit dim

bool own_fields = true

own the vt

int nbit = 0

nb of bits of the binary signature

float period = 0

interval size for 0s and 1s

ThresholdType threshold_type = Thresh_global
std::vector<float> trained

Trained threshold. size nlist * nbit or 0 if Thresh_global

InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

struct IndexLattice : public faiss::IndexFlatCodes
#include <IndexLattice.h>

Index that encodes a vector with a series of Zn lattice quantizers

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexLattice(idx_t d, int nsq, int scale_nbit, int r2)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

int nsq

number of sub-vectors

size_t dsq

dimension of sub-vectors

ZnSphereCodecAlt zn_sphere_codec

the lattice quantizer

int scale_nbit

nb bits used to encode the scale, per subvector

int lattice_nbit
std::vector<float> trained

mins and maxes of the vector norms, per subquantizer

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexLSH : public faiss::IndexFlatCodes
#include <IndexLSH.h>

The sign of each vector component is put in a binary signature

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexLSH(idx_t d, int nbits, bool rotate_data = true, bool train_thresholds = false)
const float *apply_preprocess(idx_t n, const float *x) const

Preprocesses and resizes the input to the size required to binarize the data

Parameters:

x – input vectors, size n * d

Returns:

output vectors, size n * bits. May be the same pointer as x, otherwise it should be deleted by the caller

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

void transfer_thresholds(LinearTransform *vt)

transfer the thresholds to a pre-processing stage (and unset train_thresholds)

inline ~IndexLSH() override
IndexLSH()
virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

int nbits

nb of bits per vector

bool rotate_data

whether to apply a random rotation to input

bool train_thresholds

whether we train thresholds or use 0

RandomRotationMatrix rrot

optional random rotation

std::vector<float> thresholds

thresholds to compare with

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNeuralNetCodec : public faiss::IndexFlatCodes

Subclassed by faiss::IndexQINCo

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexNeuralNetCodec(int d = 0, int M = 0, int nbits = 0, MetricType metric = METRIC_L2)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void sa_encode(idx_t n, const float *x, uint8_t *codes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

inline ~IndexNeuralNetCodec()
virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

NeuralNetCodec *net = nullptr
size_t M
size_t nbits
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexQINCo : public faiss::IndexNeuralNetCodec

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexQINCo(int d, int M, int nbits, int L, int h, MetricType metric = METRIC_L2)
inline ~IndexQINCo()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void sa_encode(idx_t n, const float *x, uint8_t *codes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *codes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

QINCo qinco
NeuralNetCodec *net = nullptr
size_t M
size_t nbits
size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNNDescent : public faiss::Index
#include <IndexNNDescent.h>

The NNDescent index is a normal random-access index with an NNDescent link structure built on top

Subclassed by faiss::IndexNNDescentFlat

Public Types

using storage_idx_t = NNDescent::storage_idx_t
using component_t = float
using distance_t = float

Public Functions

explicit IndexNNDescent(int d = 0, int K = 32, MetricType metric = METRIC_L2)
explicit IndexNNDescent(Index *storage, int K = 32)
~IndexNNDescent() override
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NNDescent nndescent

Faiss results are 64-bit.

bool own_fields
Index *storage
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNNDescentFlat : public faiss::IndexNNDescent
#include <IndexNNDescent.h>

Flat index topped with with a NNDescent structure to access elements more efficiently.

Public Types

using storage_idx_t = NNDescent::storage_idx_t
using component_t = float
using distance_t = float

Public Functions

IndexNNDescentFlat()
IndexNNDescentFlat(int d, int K, MetricType metric = METRIC_L2)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NNDescent nndescent

Faiss results are 64-bit.

bool own_fields
Index *storage
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNSG : public faiss::Index
#include <IndexNSG.h>

The NSG index is a normal random-access index with a NSG link structure built on top

Subclassed by faiss::IndexNSGFlat, faiss::IndexNSGPQ, faiss::IndexNSGSQ

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexNSG(int d = 0, int R = 32, MetricType metric = METRIC_L2)
explicit IndexNSG(Index *storage, int R = 32)
~IndexNSG() override
void build(idx_t n, const float *x, idx_t *knn_graph, int GK)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void check_knn_graph(const idx_t *knn_graph, idx_t n, int K) const
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NSG nsg

the link structure

bool own_fields = false

the sequential storage

Index *storage = nullptr
bool is_built = false

the index is built or not

int GK = 64

K of KNN graph for building.

char build_type = 0

indicate how to build a knn graph

int nndescent_S = 10

parameters for nndescent

int nndescent_R = 100
int nndescent_L
int nndescent_iter = 10
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNSGFlat : public faiss::IndexNSG
#include <IndexNSG.h>

Flat index topped with with a NSG structure to access elements more efficiently.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexNSGFlat()
IndexNSGFlat(int d, int R, MetricType metric = METRIC_L2)
void build(idx_t n, const float *x, idx_t *knn_graph, int GK)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void check_knn_graph(const idx_t *knn_graph, idx_t n, int K) const
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NSG nsg

the link structure

bool own_fields = false

the sequential storage

Index *storage = nullptr
bool is_built = false

the index is built or not

int GK = 64

K of KNN graph for building.

char build_type = 0

indicate how to build a knn graph

int nndescent_S = 10

parameters for nndescent

int nndescent_R = 100
int nndescent_L
int nndescent_iter = 10
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNSGPQ : public faiss::IndexNSG
#include <IndexNSG.h>

PQ index topped with with a NSG structure to access elements more efficiently.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexNSGPQ()
IndexNSGPQ(int d, int pq_m, int M, int pq_nbits = 8)
virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

void build(idx_t n, const float *x, idx_t *knn_graph, int GK)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void check_knn_graph(const idx_t *knn_graph, idx_t n, int K) const
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NSG nsg

the link structure

bool own_fields = false

the sequential storage

Index *storage = nullptr
bool is_built = false

the index is built or not

int GK = 64

K of KNN graph for building.

char build_type = 0

indicate how to build a knn graph

int nndescent_S = 10

parameters for nndescent

int nndescent_R = 100
int nndescent_L
int nndescent_iter = 10
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexNSGSQ : public faiss::IndexNSG
#include <IndexNSG.h>

SQ index topped with with a NSG structure to access elements more efficiently.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexNSGSQ()
IndexNSGSQ(int d, ScalarQuantizer::QuantizerType qtype, int M, MetricType metric = METRIC_L2)
void build(idx_t n, const float *x, idx_t *knn_graph, int GK)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void train(idx_t n, const float *x) override

Trains the storage if needed.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

entry point for search

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

void check_knn_graph(const idx_t *knn_graph, idx_t n, int K) const
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

NSG nsg

the link structure

bool own_fields = false

the sequential storage

Index *storage = nullptr
bool is_built = false

the index is built or not

int GK = 64

K of KNN graph for building.

char build_type = 0

indicate how to build a knn graph

int nndescent_S = 10

parameters for nndescent

int nndescent_R = 100
int nndescent_L
int nndescent_iter = 10
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexPQ : public faiss::IndexFlatCodes
#include <IndexPQ.h>

Index based on a product quantizer. Stored vectors are approximated by PQ codes.

Public Types

enum Search_type_t

how to perform the search in search_core

Values:

enumerator ST_PQ

asymmetric product quantizer (default)

enumerator ST_HE

Hamming distance on codes.

enumerator ST_generalized_HE

nb of same codes

enumerator ST_SDC

symmetric product quantizer (SDC)

enumerator ST_polysemous

HE filter (using ht) + PQ combination.

enumerator ST_polysemous_generalize

Filter on generalized Hamming.

using component_t = float
using distance_t = float

Public Functions

IndexPQ(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexPQ()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

void search_core_polysemous(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int polysemous_ht, bool generalized_hamming) const
void hamming_distance_histogram(idx_t n, const float *x, idx_t nb, const float *xb, int64_t *dist_histogram)

prepare query for a polysemous search, but instead of computing the result, just get the histogram of Hamming distances. May be computed on a provided dataset if xb != NULL

Parameters:

dist_histogram – (M * nbits + 1)

void hamming_distance_table(idx_t n, const float *x, int32_t *dis) const

compute pairwise distances between queries and database

Parameters:
  • n – nb of query vectors

  • x – query vector, size n * d

  • dis – output distances, size n * ntotal

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

ProductQuantizer pq

The product quantizer used to encode the vectors.

bool do_polysemous_training

false = standard PQ

PolysemousTraining polysemous_training

parameters used for the polysemous training

Search_type_t search_type
bool encode_signs
int polysemous_ht

Hamming threshold used for polysemy.

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct SearchParametersPQ : public faiss::SearchParameters
#include <IndexPQ.h>

override search parameters from the class

Public Members

IndexPQ::Search_type_t search_type
int polysemous_ht
IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct IndexPQStats
#include <IndexPQ.h>

statistics are robust to internal threading, but not if IndexPQ::search is called by multiple threads

Public Functions

inline IndexPQStats()
void reset()

Public Members

size_t nq
size_t ncode
size_t n_hamming_pass
struct MultiIndexQuantizer : public faiss::Index
#include <IndexPQ.h>

Quantizer where centroids are virtual: they are the Cartesian product of sub-centroids.

Subclassed by faiss::MultiIndexQuantizer2

Public Types

using component_t = float
using distance_t = float

Public Functions

MultiIndexQuantizer(int d, size_t M, size_t nbits)

number of bit per subvector index

Parameters:
  • d – dimension of the input vectors

  • M – number of subquantizers

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void add(idx_t n, const float *x) override

add and reset will crash at runtime

virtual void reset() override

removes all elements from the database.

inline MultiIndexQuantizer()
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ProductQuantizer pq
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct MultiIndexQuantizer2 : public faiss::MultiIndexQuantizer
#include <IndexPQ.h>

MultiIndexQuantizer where the PQ assignmnet is performed by sub-indexes

Public Types

using component_t = float
using distance_t = float

Public Functions

MultiIndexQuantizer2(int d, size_t M, size_t nbits, Index **indexes)
MultiIndexQuantizer2(int d, size_t nbits, Index *assign_index_0, Index *assign_index_1)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void add(idx_t n, const float *x) override

add and reset will crash at runtime

virtual void reset() override

removes all elements from the database.

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

std::vector<Index*> assign_indexes

M Indexes on d / M dimensions.

bool own_fields
ProductQuantizer pq
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexPQFastScan : public faiss::IndexFastScan
#include <IndexPQFastScan.h>

Fast scan version of IndexPQ. Works for 4-bit PQ for now.

The codes are not stored sequentially but grouped in blocks of size bbs. This makes it possible to compute distances quickly with SIMD instructions.

Implementations: 12: blocked loop with internal loop on Q with qbs 13: same with reservoir accumulator to store results 14: no qbs with heap accumulator 15: no qbs with reservoir accumulator

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexPQFastScan(int d, size_t M, size_t nbits, MetricType metric = METRIC_L2, int bbs = 32)
IndexPQFastScan() = default
explicit IndexPQFastScan(const IndexPQ &orig, int bbs = 32)

build from an existing IndexPQ

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void compute_codes(uint8_t *codes, idx_t n, const float *x) const override
virtual void compute_float_LUT(float *lut, idx_t n, const float *x) const override
virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

Decode a set of vectors.

NOTE: The codes in the IndexPQFastScan object are non-contiguous. But this method requires a contiguous representation.

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * code_size

  • x – output vectors, size n * d

void init_fastscan(int d, size_t M, size_t nbits, MetricType metric, int bbs)
virtual void reset() override

removes all elements from the database.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

void compute_quantized_LUT(idx_t n, const float *x, uint8_t *lut, float *normalizers) const
template<bool is_max>
void search_dispatch_implem(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class Cfloat>
void search_implem_234(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const NormTableScaler *scaler) const
template<class C>
void search_implem_12(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
template<class C>
void search_implem_14(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, int impl, const NormTableScaler *scaler) const
virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

CodePacker *get_CodePacker() const
virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

ProductQuantizer pq
int implem = 0
int skip = 0
int bbs
int qbs = 0
size_t M
size_t nbits
size_t ksub
size_t code_size
size_t ntotal2
size_t M2
AlignedTable<uint8_t> codes
const uint8_t *orig_codes = nullptr
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct SearchParametersPreTransform : public faiss::SearchParameters

Public Members

SearchParameters *index_params = nullptr
IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct IndexPreTransform : public faiss::Index
#include <IndexPreTransform.h>

Index that applies a LinearTransform transform on vectors before handing them over to a sub-index

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexPreTransform(Index *index)

! whether pointers are deleted in destructor

IndexPreTransform()
IndexPreTransform(VectorTransform *ltrans, Index *index)

ltrans is the last transform before the index

void prepend_transform(VectorTransform *ltrans)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void reset() override

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel) override

removes IDs from the index. Not supported by all indexes.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

const float *apply_chain(idx_t n, const float *x) const

apply the transforms in the chain. The returned float * may be equal to x, otherwise it should be deallocated.

void reverse_chain(idx_t n, const float *xt, float *x) const

Reverse the transforms in the chain. May not be implemented for all transforms in the chain or may return approximate results.

virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

~IndexPreTransform() override
virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

std::vector<VectorTransform*> chain
Index *index

! chain of transforms

bool own_fields

! the sub-index

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexRefineSearchParameters : public faiss::SearchParameters

Public Functions

virtual ~IndexRefineSearchParameters() = default

Public Members

float k_factor = 1
SearchParameters *base_index_params = nullptr
IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct IndexRefine : public faiss::Index
#include <IndexRefine.h>

Index that queries in a base_index (a fast one) and refines the results with an exact search, hopefully improving the results.

Subclassed by faiss::IndexRefineFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexRefine(Index *base_index, Index *refine_index)

initialize from empty index

IndexRefine()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void reset() override

removes all elements from the database.

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

The sa_decode decodes from the index_refine, which is assumed to be more accurate

~IndexRefine() override
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *base_index

faster index to pre-select the vectors that should be filtered

Index *refine_index

refinement index

bool own_fields

should the base index be deallocated?

bool own_refine_index

same with the refinement index

float k_factor = 1

factor between k requested in search and the k requested from the base_index (should be >= 1)

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexRefineFlat : public faiss::IndexRefine
#include <IndexRefine.h>

Version where the refinement index is an IndexFlat. It has one additional constructor that takes a table of elements to add to the flat refinement index

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexRefineFlat(Index *base_index)
IndexRefineFlat(Index *base_index, const float *xb)
IndexRefineFlat()
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void reset() override

removes all elements from the database.

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

The sa_decode decodes from the index_refine, which is assumed to be more accurate

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *base_index

faster index to pre-select the vectors that should be filtered

Index *refine_index

refinement index

bool own_fields

should the base index be deallocated?

bool own_refine_index

same with the refinement index

float k_factor = 1

factor between k requested in search and the k requested from the base_index (should be >= 1)

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

template<typename IndexT>
class IndexReplicasTemplate : public faiss::ThreadedIndex<IndexT>
#include <IndexReplicas.h>

Takes individual faiss::Index instances, and splits queries for sending to each Index instance, and joins the results together when done. Each index is managed by a separate CPU thread.

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexReplicasTemplate(bool threaded = true)

The dimension that all sub-indices must share will be the dimension of the first sub-index added

Parameters:

threaded – do we use one thread per sub-index or do queries sequentially?

explicit IndexReplicasTemplate(idx_t d, bool threaded = true)
Parameters:
  • d – the dimension that all sub-indices must share

  • threaded – do we use one thread per sub index or do queries sequentially?

explicit IndexReplicasTemplate(int d, bool threaded = true)

int version due to the implicit bool conversion ambiguity of int as dimension

inline void add_replica(IndexT *index)

Alias for addIndex()

inline void remove_replica(IndexT *index)

Alias for removeIndex()

void train(idx_t n, const component_t *x) override

faiss::Index API All indices receive the same call

void add(idx_t n, const component_t *x) override

faiss::Index API All indices receive the same call

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

faiss::Index API Query is partitioned into a slice for each sub-index split by ceil(n / #indices) for our sub-indices

void reconstruct(idx_t, component_t *v) const override

reconstructs from the first index

void syncWithSubIndexes()

Synchronize the top-level index (IndexShards) with data in the sub-indices

virtual void addIndex(IndexT *index)

override an index that is managed by ourselves. WARNING: once an index is added, it becomes unsafe to touch it from any other thread than that on which is managing it, until we are shut down. Use runOnIndex to perform work on it instead.

void removeIndex(IndexT *index)

Remove an index that is managed by ourselves. This will flush all pending work on that index, and then shut down its managing thread, and will remove the index.

void runOnIndex(std::function<void(int, IndexT*)> f)

Run a function on all indices, in the thread that the index is managed in. Function arguments are (index in collection, index pointer)

void runOnIndex(std::function<void(int, const IndexT*)> f) const
void reset() override

faiss::Index API All indices receive the same call

inline int count() const

Returns the number of sub-indices.

inline IndexT *at(size_t i)

Returns the i-th sub-index.

inline const IndexT *at(size_t i) const

Returns the i-th sub-index (const version)

Public Members

bool own_indices = false

Whether or not we are responsible for deleting our contained indices.

Protected Functions

virtual void onAfterAddIndex(IndexT *index) override

Called just after an index is added.

virtual void onAfterRemoveIndex(IndexT *index) override

Called just after an index is removed.

Protected Attributes

std::vector<std::pair<IndexT*, std::unique_ptr<WorkerThread>>> indices_

Collection of Index instances, with their managing worker thread if any.

bool isThreaded_

Is this index multi-threaded?

Protected Static Functions

static void waitAndHandleFutures(std::vector<std::future<bool>> &v)
struct IndexRowwiseMinMaxBase : public faiss::Index
#include <IndexRowwiseMinMax.h>

Provides base functions for rowwise normalizing indices.

Index wrapper that performs rowwise normalization to [0,1], preserving the coefficients. This is a vector codec index only.

Basically, this index performs a rowwise scaling to [0,1] of every row in an input dataset before calling subindex::train() and subindex::sa_encode(). sa_encode() call stores the scaling coefficients (scaler and minv) in the very beginning of every output code. The format: [scaler][minv][subindex::sa_encode() output] The de-scaling in sa_decode() is done using: output_rescaled = scaler * output + minv

An additional ::train_inplace() function is provided in order to do an inplace scaling before calling subindex::train() and, thus, avoiding the cloning of the input dataset, but modifying the input dataset because of the scaling and the scaling back. It is up to user to call this function instead of ::train()

Derived classes provide different data types for scaling coefficients. Currently, versions with fp16 and fp32 scaling coefficients are available.

  • fp16 version adds 4 extra bytes per encoded vector

  • fp32 version adds 8 extra bytes per encoded vector

Subclassed by faiss::IndexRowwiseMinMax, faiss::IndexRowwiseMinMaxFP16

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexRowwiseMinMaxBase(Index *index)
IndexRowwiseMinMaxBase()
~IndexRowwiseMinMaxBase() override
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reset() override

removes all elements from the database.

virtual void train_inplace(idx_t n, float *x) = 0
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *index

sub-index

bool own_fields

whether the subindex needs to be freed in the destructor.

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexRowwiseMinMaxFP16 : public faiss::IndexRowwiseMinMaxBase
#include <IndexRowwiseMinMax.h>

Stores scaling coefficients as fp16 values.

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexRowwiseMinMaxFP16(Index *index)
IndexRowwiseMinMaxFP16()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void train_inplace(idx_t n, float *x) override
virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reset() override

removes all elements from the database.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *index

sub-index

bool own_fields

whether the subindex needs to be freed in the destructor.

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexRowwiseMinMax : public faiss::IndexRowwiseMinMaxBase
#include <IndexRowwiseMinMax.h>

Stores scaling coefficients as fp32 values.

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexRowwiseMinMax(Index *index)
IndexRowwiseMinMax()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void train_inplace(idx_t n, float *x) override
virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reset() override

removes all elements from the database.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

Index *index

sub-index

bool own_fields

whether the subindex needs to be freed in the destructor.

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexScalarQuantizer : public faiss::IndexFlatCodes
#include <IndexScalarQuantizer.h>

Flat index built on a scalar quantizer.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexScalarQuantizer(int d, ScalarQuantizer::QuantizerType qtype, MetricType metric = METRIC_L2)

Constructor.

Parameters:
  • d – dimensionality of the input vectors

  • M – number of subquantizers

  • nbits – number of bit per subvector index

IndexScalarQuantizer()
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

Search implemented by decoding

virtual FlatCodesDistanceComputer *get_FlatCodesDistanceComputer() const override

a FlatCodesDistanceComputer offers a distance_to_code method

The default implementation explicitly decodes the vector with sa_decode.

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void add(idx_t n, const float *x) override

default add uses sa_encode

virtual void reset() override

removes all elements from the database.

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual size_t remove_ids(const IDSelector &sel) override

remove some ids. NB that because of the structure of the index, the semantics of this operation are different from the usual ones: the new ids are shifted

inline virtual DistanceComputer *get_distance_computer() const override

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

CodePacker *get_CodePacker() const
virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id = 0) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void add_sa_codes(idx_t n, const uint8_t *x, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void permute_entries(const idx_t *perm)
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

Public Members

ScalarQuantizer sq

Used to encode the vectors.

size_t code_size
std::vector<uint8_t> codes

encoded dataset, size ntotal * code_size

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexIVFScalarQuantizer : public faiss::IndexIVF
#include <IndexScalarQuantizer.h>

An IVF implementation where the components of the residuals are encoded with a scalar quantizer. All distance computations are asymmetric, so the encoded vectors are decoded and approximate distances are computed.

Public Types

using component_t = float
using distance_t = float

Public Functions

IndexIVFScalarQuantizer(Index *quantizer, size_t d, size_t nlist, ScalarQuantizer::QuantizerType qtype, MetricType metric = METRIC_L2, bool by_residual = true)
IndexIVFScalarQuantizer()
virtual void train_encoder(idx_t n, const float *x, const idx_t *assign) override

Train the encoder for the vectors.

If by_residual then it is called with residuals and corresponding assign array, otherwise x is the raw training vectors and assign=nullptr

virtual idx_t train_encoder_num_vectors() const override

can be redefined by subclasses to indicate how many training vectors they need

virtual void encode_vectors(idx_t n, const float *x, const idx_t *list_nos, uint8_t *codes, bool include_listnos = false) const override

Encodes a set of vectors as they would appear in the inverted lists

Parameters:
  • list_nos – inverted list ids as returned by the quantizer (size n). -1s are ignored.

  • codes – output codes, size n * code_size

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual void add_core(idx_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx, void *inverted_list_context = nullptr) override

Implementation of vector addition where the vector assignments are predefined. The default implementation hands over the code extraction to encode_vectors.

Parameters:

precomputed_idx – quantization indices for the input vectors (size n)

virtual InvertedListScanner *get_InvertedListScanner(bool store_pairs, const IDSelector *sel) const override

Get a scanner for this index (store_pairs means ignore labels)

The default search implementation uses this to compute the distances

virtual void reconstruct_from_offset(int64_t list_no, int64_t offset, float *recons) const override

Reconstruct a vector given the location in terms of (inv list index + inv list offset) instead of the id.

Useful for reconstructing when the direct_map is not maintained and the inv list offset is computed by search_preassigned() with store_pairs set.

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const override

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void reset() override

removes all elements from the database.

virtual void train(idx_t n, const float *x) override

Trains the quantizer and calls train_encoder to train sub-quantizers.

virtual void add(idx_t n, const float *x) override

Calls add_with_ids with NULL ids.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids) override

default implementation that calls encode_vectors

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids) override

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

assign the vectors, then call search_preassign

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reconstruct(idx_t key, float *recons) const override

reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2

virtual void update_vectors(int nv, const idx_t *idx, const float *v)

Update a subset of vectors.

The index must have a direct_map

Parameters:
  • nv – nb of vectors to update

  • idx – vector indices to update, size nv

  • v – vectors of new values, size nv*d

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override

Reconstruct a subset of the indexed vectors.

Overrides default implementation to bypass reconstruct() which requires direct_map to be maintained.

Parameters:
  • i0 – first vector to reconstruct

  • ni – nb of vectors to reconstruct

  • recons – output array of reconstructed vectors, size ni * d

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

Overrides default implementation to avoid having to maintain direct_map and instead fetch the code offsets through the store_pairs flag in search_preassigned().

Parameters:

recons – reconstructed vectors size (n, k, d)

void search_and_return_codes(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, uint8_t *recons, bool include_listno = false, const SearchParameters *params = nullptr) const

Similar to search, but also returns the codes corresponding to the stored vectors for the search results.

Parameters:
  • codes – codes (n, k, code_size)

  • include_listno – include the list ids in the code (in this case add ceil(log8(nlist)) to the code size)

virtual size_t remove_ids(const IDSelector &sel) override

Dataset manipulation functions.

virtual void check_compatible_for_merge(const Index &otherIndex) const override

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void merge_from(Index &otherIndex, idx_t add_id) override

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual CodePacker *get_CodePacker() const
virtual void copy_subset_to(IndexIVF &other, InvertedLists::subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index see Invlists::copy_subset_to for the meaning of subset_type

inline size_t get_list_size(size_t list_no) const
bool check_ids_sorted() const

are the ids sorted?

void make_direct_map(bool new_maintain_direct_map = true)

initialize a direct map

Parameters:

new_maintain_direct_map – if true, create a direct map, else clear it

void set_direct_map_type(DirectMap::Type type)
void replace_invlists(InvertedLists *il, bool own = false)

replace the inverted lists, old one is deallocated if own_invlists

virtual size_t sa_code_size() const override

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const override

encode a set of vectors sa_encode will call encode_vector with include_listno=true

Parameters:
  • n – nb of vectors to encode

  • x – the vectors to encode

  • bytes – output array for the codes

Returns:

nb of bytes written to codes

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ScalarQuantizer sq
InvertedLists *invlists = nullptr

Access to the actual data.

bool own_invlists = false
size_t code_size = 0

code size per vector in bytes

int parallel_mode = 0

Parallel mode determines how queries are parallelized with OpenMP

0 (default): split over queries 1: parallelize over inverted lists 2: parallelize over both 3: split over queries with a finer granularity

PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to prevent the heap to be initialized and finalized

const int PARALLEL_MODE_NO_HEAP_INIT = 1024
DirectMap direct_map

optional map that maps back ids to invlist entries. This enables reconstruct()

bool by_residual = true

do the codes in the invlists encode the vectors relative to the centroids?

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

template<typename IndexT>
struct IndexShardsTemplate : public faiss::ThreadedIndex<IndexT>
#include <IndexShards.h>

Index that concatenates the results from several sub-indexes

Subclassed by faiss::IndexShardsIVF

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexShardsTemplate(bool threaded = false, bool successive_ids = true)

The dimension that all sub-indices must share will be the dimension of the first sub-index added

Parameters:
  • threaded – do we use one thread per sub_index or do queries sequentially?

  • successive_ids – should we shift the returned ids by the size of each sub-index or return them as they are?

explicit IndexShardsTemplate(idx_t d, bool threaded = false, bool successive_ids = true)
Parameters:
  • threaded – do we use one thread per sub_index or do queries sequentially?

  • successive_ids – should we shift the returned ids by the size of each sub-index or return them as they are?

explicit IndexShardsTemplate(int d, bool threaded = false, bool successive_ids = true)

int version due to the implicit bool conversion ambiguity of int as dimension

inline void add_shard(IndexT *index)

Alias for addIndex()

inline void remove_shard(IndexT *index)

Alias for removeIndex()

void add(idx_t n, const component_t *x) override

supported only for sub-indices that implement add_with_ids

void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override

Cases (successive_ids, xids):

  • true, non-NULL ERROR: it makes no sense to pass in ids and request them to be shifted

  • true, NULL OK: but should be called only once (calls add() on sub-indexes).

  • false, non-NULL OK: will call add_with_ids with passed in xids distributed evenly over shards

  • false, NULL OK: will call add_with_ids on each sub-index, starting at ntotal

void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
void train(idx_t n, const component_t *x) override
virtual void syncWithSubIndexes()

Synchronize the top-level index (IndexShards) with data in the sub-indices

virtual void addIndex(IndexT *index)

override an index that is managed by ourselves. WARNING: once an index is added, it becomes unsafe to touch it from any other thread than that on which is managing it, until we are shut down. Use runOnIndex to perform work on it instead.

void removeIndex(IndexT *index)

Remove an index that is managed by ourselves. This will flush all pending work on that index, and then shut down its managing thread, and will remove the index.

void runOnIndex(std::function<void(int, IndexT*)> f)

Run a function on all indices, in the thread that the index is managed in. Function arguments are (index in collection, index pointer)

void runOnIndex(std::function<void(int, const IndexT*)> f) const
void reset() override

faiss::Index API All indices receive the same call

inline int count() const

Returns the number of sub-indices.

inline IndexT *at(size_t i)

Returns the i-th sub-index.

inline const IndexT *at(size_t i) const

Returns the i-th sub-index (const version)

Public Members

bool successive_ids
bool own_indices = false

Whether or not we are responsible for deleting our contained indices.

Protected Functions

virtual void onAfterAddIndex(IndexT *index) override

Called just after an index is added.

virtual void onAfterRemoveIndex(IndexT *index) override

Called just after an index is removed.

Protected Attributes

std::vector<std::pair<IndexT*, std::unique_ptr<WorkerThread>>> indices_

Collection of Index instances, with their managing worker thread if any.

bool isThreaded_

Is this index multi-threaded?

Protected Static Functions

static void waitAndHandleFutures(std::vector<std::future<bool>> &v)
struct IndexShardsIVF : public faiss::IndexShardsTemplate<Index>, public faiss::Level1Quantizer
#include <IndexShardsIVF.h>

IndexShards with a common coarse quantizer. All the indexes added should be IndexIVFInterface indexes so that the search_precomputed can be called.

Public Types

using component_t = typename IndexT::component_t
using distance_t = typename IndexT::distance_t

Public Functions

explicit IndexShardsIVF(Index *quantizer, size_t nlist, bool threaded = false, bool successive_ids = true)
void addIndex(Index *index) override
void add_with_ids(idx_t n, const component_t *x, const idx_t *xids) override
void train(idx_t n, const component_t *x) override
void search(idx_t n, const component_t *x, idx_t k, distance_t *distances, idx_t *labels, const SearchParameters *params = nullptr) const override
inline void add_shard(IndexT *index)

Alias for addIndex()

inline void remove_shard(IndexT *index)

Alias for removeIndex()

void add(idx_t n, const component_t *x) override

supported only for sub-indices that implement add_with_ids

virtual void syncWithSubIndexes()

Synchronize the top-level index (IndexShards) with data in the sub-indices

virtual void addIndex(IndexT *index)

override an index that is managed by ourselves. WARNING: once an index is added, it becomes unsafe to touch it from any other thread than that on which is managing it, until we are shut down. Use runOnIndex to perform work on it instead.

void removeIndex(IndexT *index)

Remove an index that is managed by ourselves. This will flush all pending work on that index, and then shut down its managing thread, and will remove the index.

void runOnIndex(std::function<void(int, IndexT*)> f)

Run a function on all indices, in the thread that the index is managed in. Function arguments are (index in collection, index pointer)

void runOnIndex(std::function<void(int, const IndexT*)> f) const
void reset() override

faiss::Index API All indices receive the same call

inline int count() const

Returns the number of sub-indices.

inline IndexT *at(size_t i)

Returns the i-th sub-index.

inline const IndexT *at(size_t i) const

Returns the i-th sub-index (const version)

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

bool successive_ids
bool own_indices = false

Whether or not we are responsible for deleting our contained indices.

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

Protected Functions

virtual void onAfterAddIndex(IndexT *index) override

Called just after an index is added.

virtual void onAfterRemoveIndex(IndexT *index) override

Called just after an index is removed.

Protected Attributes

std::vector<std::pair<IndexT*, std::unique_ptr<WorkerThread>>> indices_

Collection of Index instances, with their managing worker thread if any.

bool isThreaded_

Is this index multi-threaded?

Protected Static Functions

static void waitAndHandleFutures(std::vector<std::future<bool>> &v)
struct BlockInvertedLists : public faiss::InvertedLists
#include <BlockInvertedLists.h>

Inverted Lists that are organized by blocks.

Different from the regular inverted lists, the codes are organized by blocks of size block_size bytes that reprsent a set of n_per_block. Therefore, code allocations are always rounded up to block_size bytes. The codes are also aligned on 32-byte boundaries for use with SIMD.

To avoid misinterpretations, the code_size is set to (size_t)(-1), even if arguably the amount of memory consumed by code is block_size / n_per_block.

The writing functions add_entries and update_entries operate on block-aligned data.

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

BlockInvertedLists(size_t nlist, size_t vec_per_block, size_t block_size)
BlockInvertedLists(size_t nlist, const CodePacker *packer)
BlockInvertedLists()
virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

size_t remove_ids(const IDSelector &sel)

remove ids from the InvertedLists

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override

not implemented

virtual void resize(size_t list_no, size_t new_size) override
~BlockInvertedLists() override
virtual void release_codes(size_t list_no, const uint8_t *codes) const

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

size_t n_per_block = 0
size_t block_size = 0
const CodePacker *packer = nullptr
std::vector<AlignedTable<uint8_t>> codes
std::vector<std::vector<idx_t>> ids
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct BlockInvertedListsIOHook : public faiss::InvertedListsIOHook

Public Functions

BlockInvertedListsIOHook()
virtual void write(const InvertedLists *ils, IOWriter *f) const override

write the index to the IOWriter (including the fourcc)

virtual InvertedLists *read(IOReader *f, int io_flags) const override

called when the fourcc matches this class’s fourcc

virtual InvertedLists *read_ArrayInvertedLists(IOReader *f, int io_flags, size_t nlist, size_t code_size, const std::vector<size_t> &sizes) const

read from a ArrayInvertedLists into this invertedlist type. For this to work, the callback has to be enabled and the io_flag has to be set to IO_FLAG_SKIP_IVF_DATA | (16 upper bits of the fourcc)

(default implementation fails)

Public Members

const std::string key

string version of the fourcc

const std::string classname

typeid.name

Public Static Functions

static void add_callback(InvertedListsIOHook*)
static void print_callbacks()
static InvertedListsIOHook *lookup(int h)
static InvertedListsIOHook *lookup_classname(const std::string &classname)
struct DirectMap
#include <DirectMap.h>

Direct map: a way to map back from ids to inverted lists

Public Types

enum Type

Values:

enumerator NoMap
enumerator Array
enumerator Hashtable

Public Functions

DirectMap()
void set_type(Type new_type, const InvertedLists *invlists, size_t ntotal)

set type and initialize

idx_t get(idx_t id) const

get an entry

inline bool no() const

for quick checks

void check_can_add(const idx_t *ids)

throw if Array and ids is not NULL

update the direct_map

void add_single_id(idx_t id, idx_t list_no, size_t offset)

non thread-safe version

void clear()

remove all entries

size_t remove_ids(const IDSelector &sel, InvertedLists *invlists)

remove ids from the InvertedLists, possibly using the direct map

operations on inverted lists that require translation with a DirectMap

void update_codes(InvertedLists *invlists, int n, const idx_t *ids, const idx_t *list_nos, const uint8_t *codes)

update entries, using the direct map

Public Members

Type type
std::vector<idx_t> array

map for direct access to the elements. Map ids to LO-encoded entries.

std::unordered_map<idx_t, idx_t> hashtable
struct DirectMapAdd
#include <DirectMap.h>

Thread-safe way of updating the direct_map.

Public Types

using Type = DirectMap::Type

Public Functions

DirectMapAdd(DirectMap &direct_map, size_t n, const idx_t *xids)
void add(size_t i, idx_t list_no, size_t offset)

add vector i (with id xids[i]) at list_no and offset

~DirectMapAdd()

Public Members

DirectMap &direct_map
DirectMap::Type type
size_t ntotal
size_t n
const idx_t *xids
std::vector<idx_t> all_ofs
struct InvertedListsIterator

Public Functions

virtual ~InvertedListsIterator()
virtual bool is_available() const = 0
virtual void next() = 0
virtual std::pair<idx_t, const uint8_t*> get_id_and_codes() = 0
struct InvertedLists
#include <InvertedLists.h>

Table of inverted lists multithreading rules:

  • concurrent read accesses are allowed

  • concurrent update accesses are allowed

  • for resize and add_entries, only concurrent access to different lists are allowed

Subclassed by faiss::ArrayInvertedLists, faiss::BlockInvertedLists, faiss::OnDiskInvertedLists, faiss::ReadOnlyInvertedLists

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

InvertedLists(size_t nlist, size_t code_size)
virtual ~InvertedLists()
virtual size_t list_size(size_t list_no) const = 0

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const = 0

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const = 0

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) = 0
virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) = 0
virtual void resize(size_t list_no, size_t new_size) = 0
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct ScopedCodes

Public Functions

inline ScopedCodes(const InvertedLists *il, size_t list_no)
inline ScopedCodes(const InvertedLists *il, size_t list_no, size_t offset)
inline const uint8_t *get()
inline ~ScopedCodes()

Public Members

const InvertedLists *il
const uint8_t *codes
size_t list_no
struct ScopedIds

Public Functions

inline ScopedIds(const InvertedLists *il, size_t list_no)
inline const idx_t *get()
inline idx_t operator[](size_t i) const
inline ~ScopedIds()

Public Members

const InvertedLists *il
const idx_t *ids
size_t list_no
struct ArrayInvertedLists : public faiss::InvertedLists
#include <InvertedLists.h>

simple (default) implementation as an array of inverted lists

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

ArrayInvertedLists(size_t nlist, size_t code_size)
virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
void permute_invlists(const idx_t *map)

permute the inverted lists, map maps new_id to old_id

virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const override

check if the list is empty

~ArrayInvertedLists() override
virtual void release_codes(size_t list_no, const uint8_t *codes) const

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

std::vector<std::vector<uint8_t>> codes
std::vector<std::vector<idx_t>> ids

Inverted lists for indexes.

size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct ReadOnlyInvertedLists : public faiss::InvertedLists
#include <InvertedLists.h>

invlists that fail for all write functions

Subclassed by faiss::HStackInvertedLists, faiss::MaskedInvertedLists, faiss::SliceInvertedLists, faiss::StopWordsInvertedLists, faiss::VStackInvertedLists

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

inline ReadOnlyInvertedLists(size_t nlist, size_t code_size)
virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual size_t list_size(size_t list_no) const = 0

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const = 0

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const = 0

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct HStackInvertedLists : public faiss::ReadOnlyInvertedLists
#include <InvertedLists.h>

Horizontal stack of inverted lists.

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

HStackInvertedLists(int nil, const InvertedLists **ils)

build InvertedLists by concatenating nil of them

virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual void release_codes(size_t list_no, const uint8_t *codes) const override

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const override

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const override
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const override
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

std::vector<const InvertedLists*> ils
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct SliceInvertedLists : public faiss::ReadOnlyInvertedLists
#include <InvertedLists.h>

vertical slice of indexes in another InvertedLists

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

SliceInvertedLists(const InvertedLists *il, idx_t i0, idx_t i1)
virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const override

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const override

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const override
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const override
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

const InvertedLists *il
idx_t i0
idx_t i1
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct VStackInvertedLists : public faiss::ReadOnlyInvertedLists

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

VStackInvertedLists(int nil, const InvertedLists **ils)

build InvertedLists by concatenating nil of them

virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const override

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const override

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const override
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const override
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

std::vector<const InvertedLists*> ils
std::vector<idx_t> cumsz
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct MaskedInvertedLists : public faiss::ReadOnlyInvertedLists
#include <InvertedLists.h>

use the first inverted lists if they are non-empty otherwise use the second

This is useful if il1 has a few inverted lists that are too long, and that il0 has replacement lists for those, with empty lists for the others.

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

MaskedInvertedLists(const InvertedLists *il0, const InvertedLists *il1)
virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const override

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const override

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const override
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const override
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

const InvertedLists *il0
const InvertedLists *il1
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct StopWordsInvertedLists : public faiss::ReadOnlyInvertedLists
#include <InvertedLists.h>

if the inverted list in il is smaller than maxsize then return it, otherwise return an empty invlist

Public Types

enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

StopWordsInvertedLists(const InvertedLists *il, size_t maxsize)
virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual void release_codes(size_t list_no, const uint8_t *codes) const override

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const override

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const override
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const override
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

const InvertedLists *il0
size_t maxsize
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct InvertedListsIOHook
#include <InvertedListsIOHook.h>

Callbacks to handle other types of InvertedList objects.

The callbacks should be registered with add_callback before calling read_index or read_InvertedLists. The callbacks for OnDiskInvertedLists are registrered by default. The invlist type is identified by:

  • the key (a fourcc) at read time

  • the class name (as given by typeid.name) at write time

Subclassed by faiss::BlockInvertedListsIOHook, faiss::OnDiskInvertedListsIOHook

Public Functions

InvertedListsIOHook(const std::string &key, const std::string &classname)
virtual void write(const InvertedLists *ils, IOWriter *f) const = 0

write the index to the IOWriter (including the fourcc)

virtual InvertedLists *read(IOReader *f, int io_flags) const = 0

called when the fourcc matches this class’s fourcc

virtual InvertedLists *read_ArrayInvertedLists(IOReader *f, int io_flags, size_t nlist, size_t code_size, const std::vector<size_t> &sizes) const

read from a ArrayInvertedLists into this invertedlist type. For this to work, the callback has to be enabled and the io_flag has to be set to IO_FLAG_SKIP_IVF_DATA | (16 upper bits of the fourcc)

(default implementation fails)

inline virtual ~InvertedListsIOHook()

Public Members

const std::string key

string version of the fourcc

const std::string classname

typeid.name

Public Static Functions

static void add_callback(InvertedListsIOHook*)
static void print_callbacks()
static InvertedListsIOHook *lookup(int h)
static InvertedListsIOHook *lookup_classname(const std::string &classname)
struct OnDiskOneList

Public Functions

OnDiskOneList()

Public Members

size_t size
size_t capacity
size_t offset
struct OnDiskInvertedLists : public faiss::InvertedLists
#include <OnDiskInvertedLists.h>

On-disk storage of inverted lists.

The data is stored in a mmapped chunk of memory (base pointer ptr, size totsize). Each list is a range of memory that contains (object List) that contains:

  • uint8_t codes[capacity * code_size]

  • followed by idx_t ids[capacity]

in each of the arrays, the size <= capacity first elements are used, the rest is not initialized.

Addition and resize are supported by:

  • roundind up the capacity of the lists to a power of two

  • maintaining a list of empty slots, sorted by size.

  • resizing the mmapped block is adjusted as needed.

An OnDiskInvertedLists is compact if the size == capacity for all lists and there are no available slots.

Addition to the invlists is slow. For incremental add it is better to use a default ArrayInvertedLists object and convert it to an OnDisk with merge_from.

When it is known that a set of lists will be accessed, it is useful to call prefetch_lists, that launches a set of threads to read the lists in parallel.

Public Types

using List = OnDiskOneList
enum subset_type_t

Values:

enumerator SUBSET_TYPE_ID_RANGE
enumerator SUBSET_TYPE_ID_MOD
enumerator SUBSET_TYPE_ELEMENT_RANGE
enumerator SUBSET_TYPE_INVLIST_FRACTION
enumerator SUBSET_TYPE_INVLIST

Public Functions

OnDiskInvertedLists(size_t nlist, size_t code_size, const char *filename)

are inverted lists mapped read-only

virtual size_t list_size(size_t list_no) const override

get the size of a list

virtual const uint8_t *get_codes(size_t list_no) const override

get the codes for an inverted list must be released by release_codes

Returns:

codes size list_size * code_size

virtual const idx_t *get_ids(size_t list_no) const override

get the ids for an inverted list must be released by release_ids

Returns:

ids size list_size

virtual size_t add_entries(size_t list_no, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void update_entries(size_t list_no, size_t offset, size_t n_entry, const idx_t *ids, const uint8_t *code) override
virtual void resize(size_t list_no, size_t new_size) override
size_t merge_from_multiple(const InvertedLists **ils, int n_il, bool shift_ids = false, bool verbose = false)
size_t merge_from_1(const InvertedLists *il, bool verbose = false)

same as merge_from for a single invlist

void crop_invlists(size_t l0, size_t l1)

restrict the inverted lists to l0:l1 without touching the mmapped region

virtual void prefetch_lists(const idx_t *list_nos, int nlist) const override

prepare the following lists (default does nothing) a list can be -1 hence the signed long

~OnDiskInvertedLists() override
void do_mmap()
void update_totsize(size_t new_totsize)
void resize_locked(size_t list_no, size_t new_size)
size_t allocate_slot(size_t capacity)
void free_slot(size_t offset, size_t capacity)
void set_all_lists_sizes(const size_t *sizes)

override all list sizes and make a packed storage

OnDiskInvertedLists()
virtual void release_codes(size_t list_no, const uint8_t *codes) const

release codes returned by get_codes (default implementation is nop

virtual void release_ids(size_t list_no, const idx_t *ids) const

release ids returned by get_ids

virtual idx_t get_single_id(size_t list_no, size_t offset) const
Returns:

a single id in an inverted list

virtual const uint8_t *get_single_code(size_t list_no, size_t offset) const
Returns:

a single code in an inverted list (should be deallocated with release_codes)

virtual bool is_empty(size_t list_no, void *inverted_list_context = nullptr) const

check if the list is empty

virtual InvertedListsIterator *get_iterator(size_t list_no, void *inverted_list_context = nullptr) const

get iterable for lists that use_iterator

virtual size_t add_entry(size_t list_no, idx_t theid, const uint8_t *code, void *inverted_list_context = nullptr)

add one entry to an inverted list

virtual void update_entry(size_t list_no, size_t offset, idx_t id, const uint8_t *code)
virtual void reset()
void merge_from(InvertedLists *oivf, size_t add_id)

move all entries from oivf (empty on output)

size_t copy_subset_to(InvertedLists &other, subset_type_t subset_type, idx_t a1, idx_t a2) const

copy a subset of the entries index to the other index

Returns:

number of entries copied

double imbalance_factor() const

1= perfectly balanced, >1: imbalanced

void print_stats() const

display some stats about the inverted lists

size_t compute_ntotal() const

sum up list sizes

Public Members

std::vector<List> lists
std::list<Slot> slots
std::string filename
size_t totsize
uint8_t *ptr
bool read_only
LockLevels *locks
OngoingPrefetch *pf
int prefetch_nthread
size_t nlist

number of possible key values

size_t code_size

code size per vector in bytes

bool use_iterator = false

request to use iterator rather than get_codes / get_ids

Public Static Attributes

static const size_t INVALID_CODE_SIZE = static_cast<size_t>(-1)

used for BlockInvertedLists, where the codes are packed into groups and the individual code size is meaningless

struct Slot

Public Functions

Slot(size_t offset, size_t capacity)
Slot()

Public Members

size_t offset
size_t capacity
struct OnDiskInvertedListsIOHook : public faiss::InvertedListsIOHook

Public Functions

OnDiskInvertedListsIOHook()
virtual void write(const InvertedLists *ils, IOWriter *f) const override

write the index to the IOWriter (including the fourcc)

virtual InvertedLists *read(IOReader *f, int io_flags) const override

called when the fourcc matches this class’s fourcc

virtual InvertedLists *read_ArrayInvertedLists(IOReader *f, int io_flags, size_t nlist, size_t code_size, const std::vector<size_t> &sizes) const override

read from a ArrayInvertedLists into this invertedlist type. For this to work, the callback has to be enabled and the io_flag has to be set to IO_FLAG_SKIP_IVF_DATA | (16 upper bits of the fourcc)

(default implementation fails)

Public Members

const std::string key

string version of the fourcc

const std::string classname

typeid.name

Public Static Functions

static void add_callback(InvertedListsIOHook*)
static void print_callbacks()
static InvertedListsIOHook *lookup(int h)
static InvertedListsIOHook *lookup_classname(const std::string &classname)
struct MatrixStats
#include <MatrixStats.h>

Reports some statistics on a dataset and comments on them.

It is a class rather than a function so that all stats can also be accessed from code

Public Functions

MatrixStats(size_t n, size_t d, const float *x)
void do_comment(const char *fmt, ...)

Public Members

std::string comments
size_t n = 0
size_t d = 0
size_t n_collision = 0
size_t n_valid = 0
size_t n0 = 0
double min_norm2 = HUGE_VALF
double max_norm2 = 0
uint64_t hash_value = 0
std::vector<PerDimStats> per_dim_stats
std::unordered_map<uint64_t, Occurrence> occurrences
char *buf
size_t nbuf
struct Occurrence

Public Members

size_t first
size_t count
struct PerDimStats

Public Functions

void add(float x)
void compute_mean_std()

Public Members

size_t n = 0

counts of various special entries

size_t n_nan = 0
size_t n_inf = 0
size_t n0 = 0
float min = HUGE_VALF

to get min/max and stddev values

float max = -HUGE_VALF
double sum = 0
double sum2 = 0
size_t n_valid = 0
double mean = NAN
double stddev = NAN
struct IndexSplitVectors : public faiss::Index
#include <MetaIndexes.h>

splits input vectors in segments and assigns each segment to a sub-index used to distribute a MultiIndexQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexSplitVectors(idx_t d, bool threaded = false)

sum of dimensions seen so far

void add_sub_index(Index*)
void sync_with_sub_indexes()
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void reset() override

removes all elements from the database.

~IndexSplitVectors() override
virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

bool own_fields
bool threaded
std::vector<Index*> sub_indexes
idx_t sum_d
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

struct IndexRandom : public faiss::Index
#include <MetaIndexes.h>

index that returns random results. used mainly for time benchmarks

Public Types

using component_t = float
using distance_t = float

Public Functions

explicit IndexRandom(idx_t d, idx_t ntotal = 0, int64_t seed = 1234, MetricType mt = METRIC_L2)
virtual void add(idx_t n, const float *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1 This function slices the input vectors in chunks smaller than blocksize_add and calls add_core.

Parameters:
  • n – number of vectors

  • x – input matrix, size n * d

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

virtual void reconstruct(idx_t key, float *recons) const override

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reset() override

removes all elements from the database.

~IndexRandom() override
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void add_with_ids(idx_t n, const float *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const

return the indexes of the k vectors closest to the query x.

This function is identical as search but only return labels of neighbors.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • labels – output labels of the NNs, size n*k

  • k – number of nearest neighbours

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting arrays is padded with -1s.

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • k – number of extracted vectors

  • distances – output pairwise distances, size n*k

  • labels – output labels of the NNs, size n*k

  • recons – reconstructed vectors size (n, k, d)

virtual void compute_residual(const float *x, float *residual, idx_t key) const

Computes a residual vector after indexing encoding.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • x – input vector, size d

  • residual – output residual vector, size d

  • key – encoded index, as returned by search and assign

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const

Computes a residual vector after indexing encoding (batch form). Equivalent to calling compute_residual for each vector.

The residual vector is the difference between a vector and the reconstruction that can be decoded from its representation in the index. The residual can be used for multiple-stage indexing methods, like IndexIVF’s methods.

Parameters:
  • n – number of vectors

  • xs – input vectors, size (n x d)

  • residuals – output residual vectors, size (n x d)

  • keys – encoded index, as returned by search and assign

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int64_t seed
int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

template<class T, int A = 32>
struct AlignedTableTightAlloc

Public Functions

inline AlignedTableTightAlloc()
inline explicit AlignedTableTightAlloc(size_t n)
inline size_t itemsize() const
inline void resize(size_t n)
inline void clear()
inline size_t size() const
inline size_t nbytes() const
inline T *get()
inline const T *get() const
inline T *data()
inline const T *data() const
inline T &operator[](size_t i)
inline T operator[](size_t i) const
inline ~AlignedTableTightAlloc()
inline AlignedTableTightAlloc<T, A> &operator=(const AlignedTableTightAlloc<T, A> &other)
inline AlignedTableTightAlloc(const AlignedTableTightAlloc<T, A> &other)

Public Members

T *ptr
size_t numel
template<class T, int A = 32>
struct AlignedTable

Public Functions

inline AlignedTable()
inline explicit AlignedTable(size_t n)
inline size_t itemsize() const
inline void resize(size_t n)
inline void clear()
inline size_t size() const
inline size_t nbytes() const
inline T *get()
inline const T *get() const
inline T *data()
inline const T *data() const
inline T &operator[](size_t i)
inline T operator[](size_t i) const

Public Members

AlignedTableTightAlloc<T, A> tab
size_t numel = 0

Public Static Functions

static inline size_t round_capacity(size_t n)
template<typename C, uint32_t NBUCKETS, uint32_t N>
struct HeapWithBuckets
template<uint32_t NBUCKETS, uint32_t N>
struct HeapWithBuckets<CMax<float, int>, NBUCKETS, N>

Public Static Functions

static inline void addn (const uint32_t n, const float *const __restrict distances, const uint32_t k, float *const __restrict bh_val, int32_t *const __restrict bh_ids)
static inline void bs_addn (const uint32_t beam_size, const uint32_t n_per_beam, const float *const __restrict distances, const uint32_t k, float *const __restrict bh_val, int32_t *const __restrict bh_ids)
static inline void addn (const uint32_t n, const float *const __restrict distances, const uint32_t k, float *const __restrict bh_val, int32_t *const __restrict bh_ids)
static inline void bs_addn (const uint32_t beam_size, const uint32_t n_per_beam, const float *const __restrict distances, const uint32_t k, float *const __restrict bh_val, int32_t *const __restrict bh_ids)

Public Static Attributes

static constexpr uint32_t NBUCKETS_8 = NBUCKETS / 8
template<typename C, uint32_t NBUCKETS, uint32_t N, typename HammingComputerT>
struct HeapWithBucketsForHamming32
template<uint32_t NBUCKETS, uint32_t N, typename HammingComputerT>
struct HeapWithBucketsForHamming32<CMax<int, int64_t>, NBUCKETS, N, HammingComputerT>

Public Static Functions

static inline void addn (const uint32_t n, const HammingComputerT &hc, const uint8_t *const __restrict binaryVectors, const uint32_t k, int *const __restrict bh_val, int64_t *const __restrict bh_ids)
static inline void bs_addn (const uint32_t beam_size, const uint32_t n_per_beam, const HammingComputerT &hc, const uint8_t *const __restrict binary_vectors, const uint32_t k, int *const __restrict bh_val, int64_t *const __restrict bh_ids)

Public Static Attributes

static constexpr uint32_t NBUCKETS_8 = NBUCKETS / 8
template<typename C, uint32_t NBUCKETS, uint32_t N, typename HammingComputerT>
struct HeapWithBucketsForHamming16
template<uint32_t NBUCKETS, uint32_t N, typename HammingComputerT>
struct HeapWithBucketsForHamming16<CMax<int, int64_t>, NBUCKETS, N, HammingComputerT>

Public Static Functions

static inline void addn (const uint32_t n, const HammingComputerT &hc, const uint8_t *const __restrict binaryVectors, const uint32_t k, int *const __restrict bh_val, int64_t *const __restrict bh_ids)
static inline void bs_addn (const uint32_t beam_size, const uint32_t n_per_beam, const HammingComputerT &hc, const uint8_t *const __restrict binary_vectors, const uint32_t k, int *const __restrict bh_val, int64_t *const __restrict bh_ids)

Public Static Attributes

static constexpr uint32_t NBUCKETS_16 = NBUCKETS / 16
template<MetricType mt>
struct VectorDistance

Public Types

using C = typename std::conditional<is_similarity_metric(mt), CMin<float, int64_t>, CMax<float, int64_t>>::type

Public Functions

inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const
inline float operator()(const float *x, const float *y) const

Public Members

size_t d
float metric_arg

Public Static Attributes

static constexpr bool is_similarity = is_similarity_metric(mt)
template<class HammingComputer>
struct HCounterState
#include <hamming-inl.h>

This class maintains a list of best distances seen so far.

Since the distances are in a limited range (0 to nbit), the object maintains one list per possible distance, and fills in only the n-first lists, such that the sum of sizes of the n lists is below k.

Public Functions

inline HCounterState(int *counters, int64_t *ids_per_dis, const uint8_t *x, int d, int k)
inline void update_counter(const uint8_t *y, size_t j)

Public Members

int *counters
int64_t *ids_per_dis
HammingComputer hc
int thres
int count_lt
int count_eq
int k
struct BitstringWriter

Public Functions

inline BitstringWriter(uint8_t *code, size_t code_size)
inline void write(uint64_t x, int nbit)

Public Members

uint8_t *code
size_t code_size
size_t i
struct BitstringReader

Public Functions

inline BitstringReader(const uint8_t *code, size_t code_size)
inline uint64_t read(int nbit)

Public Members

const uint8_t *code
size_t code_size
size_t i
struct HammingComputer4

Public Functions

inline HammingComputer4()
inline HammingComputer4(const uint8_t *a, int code_size)
inline void set(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const
inline HammingComputer4()
inline HammingComputer4(const uint8_t *a, int code_size)
inline void set(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const

Public Members

uint32_t a0

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputer8

Public Functions

inline HammingComputer8()
inline HammingComputer8(const uint8_t *a, int code_size)
inline void set(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const
inline HammingComputer8()
inline HammingComputer8(const uint8_t *a, int code_size)
inline void set(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const

Public Members

uint64_t a0

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputer16

Public Functions

inline HammingComputer16()
inline HammingComputer16(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline HammingComputer16()
inline HammingComputer16(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

uint64_t a0
uint64_t a1

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputer20

Public Functions

inline HammingComputer20()
inline HammingComputer20(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline HammingComputer20()
inline HammingComputer20(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

uint64_t a0
uint64_t a1
uint32_t a2

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputer32

Public Functions

inline HammingComputer32()
inline HammingComputer32(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline HammingComputer32()
inline HammingComputer32(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

uint64_t a0
uint64_t a1
uint64_t a2
uint64_t a3

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputer64

Public Functions

inline HammingComputer64()
inline HammingComputer64(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline HammingComputer64()
inline HammingComputer64(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

uint64_t a0
uint64_t a1
uint64_t a2
uint64_t a3
uint64_t a4
uint64_t a5
uint64_t a6
uint64_t a7

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct HammingComputerDefault

Subclassed by faiss::HammingComputer< CODE_SIZE >

Public Functions

inline HammingComputerDefault()
inline HammingComputerDefault(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8_2, int code_size)
inline int hamming(const uint8_t *b8) const
inline int get_code_size() const
inline HammingComputerDefault()
inline HammingComputerDefault(const uint8_t *a8, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline int get_code_size() const

Public Members

const uint8_t *a8
int quotient8
int remainder8
struct GenHammingComputer8

Public Functions

inline GenHammingComputer8(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const
inline GenHammingComputer8(const uint8_t *a, int code_size)
inline int hamming(const uint8_t *b) const

Public Members

uint64_t a0

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct GenHammingComputer16

Public Functions

inline GenHammingComputer16(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline GenHammingComputer16(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

__m128i a
uint64_t a0
uint64_t a1

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct GenHammingComputer32

Public Functions

inline GenHammingComputer32(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline GenHammingComputer32(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const

Public Members

__m256i a
uint64_t a0
uint64_t a1
uint64_t a2
uint64_t a3

Public Static Functions

static inline constexpr int get_code_size()
static inline constexpr int get_code_size()
struct GenHammingComputerM8

Public Functions

inline GenHammingComputerM8(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline int get_code_size() const
inline GenHammingComputerM8(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline int get_code_size() const

Public Members

const uint64_t *a
int n
template<int CODE_SIZE>
struct HammingComputer : public faiss::HammingComputerDefault

Public Functions

inline HammingComputer(const uint8_t *a, int code_size)
inline void set(const uint8_t *a8_2, int code_size)
inline void set(const uint8_t *a8, int code_size)
inline int hamming(const uint8_t *b8) const
inline int hamming(const uint8_t *b8) const
inline int get_code_size() const
inline int get_code_size() const

Public Members

const uint8_t *a8
int quotient8
int remainder8
template<typename C>
struct HeapArray
#include <Heap.h>

a template structure for a set of [min|max]-heaps it is tailored so that the actual data of the heaps can just live in compact arrays.

Public Types

typedef C::TI TI
typedef C::T T

Public Functions

inline T *get_val(size_t key)

Return the list of values for a heap.

inline TI *get_ids(size_t key)

Correspponding identifiers.

void heapify()

prepare all the heaps before adding

void addn(size_t nj, const T *vin, TI j0 = 0, size_t i0 = 0, int64_t ni = -1)

add nj elements to heaps i0:i0+ni, with sequential ids

Parameters:
  • nj – nb of elements to add to each heap

  • vin – elements to add, size ni * nj

  • j0 – add this to the ids that are added

  • i0 – first heap to update

  • ni – nb of elements to update (-1 = use nh)

void addn_with_ids(size_t nj, const T *vin, const TI *id_in = nullptr, int64_t id_stride = 0, size_t i0 = 0, int64_t ni = -1)

same as addn

Parameters:
  • id_in – ids of the elements to add, size ni * nj

  • id_stride – stride for id_in

void addn_query_subset_with_ids(size_t nsubset, const TI *subset, size_t nj, const T *vin, const TI *id_in = nullptr, int64_t id_stride = 0)

same as addn_with_ids, but for just a subset of queries

Parameters:
  • nsubset – number of query entries to update

  • subset – indexes of queries to update, in 0..nh-1, size nsubset

void reorder()

reorder all the heaps

void per_line_extrema(T *vals_out, TI *idx_out) const

this is not really a heap function. It just finds the per-line extrema of each line of array D

Parameters:
  • vals_out – extreme value of each line (size nh, or NULL)

  • idx_out – index of extreme value (size nh or NULL)

Public Members

size_t nh

number of heaps

size_t k

allocated size per heap

TI *ids

identifiers (size nh * k)

T *val

values (distances or similarities), size nh * k

struct QINCoStep

Public Functions

QINCoStep(int d, int K, int L, int h)
inline nn::FFN &get_residual_block(int i)
nn::Int32Tensor2D encode(const nn::Tensor2D &xhat, const nn::Tensor2D &x, nn::Tensor2D *residuals = nullptr) const

encode a set of vectors x with intial estimate xhat. Optionally return the delta to be added to xhat to form the new xhat

nn::Tensor2D decode(const nn::Tensor2D &xhat, const nn::Int32Tensor2D &codes) const

Public Members

int d

d: input dim, K: codebook size, L: # of residual blocks, h: hidden dim

int K
int L
int h
nn::Embedding codebook
nn::Linear MLPconcat
std::vector<nn::FFN> residual_blocks
struct NeuralNetCodec

Subclassed by faiss::QINCo

Public Functions

inline NeuralNetCodec(int d, int M)
virtual nn::Tensor2D decode(const nn::Int32Tensor2D &codes) const = 0
virtual nn::Int32Tensor2D encode(const nn::Tensor2D &x) const = 0
inline virtual ~NeuralNetCodec()

Public Members

int d
int M
struct QINCo : public faiss::NeuralNetCodec

Public Functions

QINCo(int d, int K, int L, int M, int h)
inline QINCoStep &get_step(int i)
virtual nn::Tensor2D decode(const nn::Int32Tensor2D &codes) const override
virtual nn::Int32Tensor2D encode(const nn::Tensor2D &x) const override
inline virtual ~QINCo()

Public Members

int K
int L
int h
nn::Embedding codebook0
std::vector<QINCoStep> steps
int d
int M
template<typename T_, typename TI_>
struct CMax

The C object gives the type T of the values of a key-value storage, the type of the keys, TI and the comparison that is done: CMax for a decreasing series and CMin for increasing series. In other words, for a given threshold threshold, an incoming value x is kept if

C::cmp(threshold, x)
is true.

Public Types

typedef T_ T
typedef TI_ TI
typedef CMin<T_, TI_> Crev

Public Static Functions

static inline bool cmp(T a, T b)
static inline bool cmp2(T a1, T b1, TI a2, TI b2)
static inline T neutral()
static inline T nextafter(T x)

Public Static Attributes

static const bool is_max = true
template<typename T_, typename TI_>
struct CMin

Public Types

typedef T_ T
typedef TI_ TI
typedef CMax<T_, TI_> Crev

Public Static Functions

static inline bool cmp(T a, T b)
static inline bool cmp2(T a1, T b1, TI a2, TI b2)
static inline T neutral()
static inline T nextafter(T x)

Public Static Attributes

static const bool is_max = false
struct PartitionStats

Public Functions

inline PartitionStats()
void reset()

Public Members

uint64_t bissect_cycles
uint64_t compress_cycles
struct RandomGenerator
#include <random.h>

random generator that can be used in multithreaded contexts

Public Functions

int rand_int()

random positive integer

int64_t rand_int64()

random int64_t

int rand_int(int max)

generate random integer between 0 and max-1

float rand_float()

between 0 and 1

double rand_double()
explicit RandomGenerator(int64_t seed = 1234)

Public Members

std::mt19937 mt
struct SplitMix64RandomGenerator
#include <random.h>

fast random generator that cannot be used in multithreaded contexts. based on https://prng.di.unimi.it/

Public Functions

int rand_int()

random positive integer

int64_t rand_int64()

random int64_t

int rand_int(int max)

generate random integer between 0 and max-1

float rand_float()

between 0 and 1

double rand_double()
explicit SplitMix64RandomGenerator(int64_t seed = 1234)
uint64_t next()

Public Members

uint64_t state
struct simd256bit
#include <simdlib_avx2.h>

256-bit representation without interpretation as a vector

Simple wrapper around the AVX 256-bit registers

The objective is to separate the different interpretations of the same registers (as a vector of uint8, uint16 or uint32), to provide printing functions, and to give more readable names to the AVX intrinsics. It does not pretend to be exhausitve, functions are added as needed.

Subclassed by faiss::simd16uint16, faiss::simd16uint16, faiss::simd16uint16, faiss::simd32uint8, faiss::simd32uint8, faiss::simd32uint8, faiss::simd8float32, faiss::simd8float32, faiss::simd8float32, faiss::simd8uint32, faiss::simd8uint32, faiss::simd8uint32

Public Functions

inline simd256bit()
inline explicit simd256bit(__m256i i)
inline explicit simd256bit(__m256 f)
inline explicit simd256bit(const void *x)
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline bool is_same_as(simd256bit other) const
inline simd256bit()
inline explicit simd256bit(const void *x)
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline bool is_same_as(simd256bit other) const
inline simd256bit()
inline explicit simd256bit(const void *x)
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline bool is_same_as(simd256bit other) const

Public Members

__m256i i
__m256 f
union faiss::simd256bit::[anonymous] [anonymous]
uint8_t u8[32]
uint16_t u16[16]
uint32_t u32[8]
float f32[8]
union faiss::simd256bit::[anonymous] [anonymous]
union faiss::simd256bit::[anonymous] [anonymous]
struct simd16uint16 : public faiss::simd256bit, public faiss::simd256bit, public faiss::simd256bit
#include <simdlib_avx2.h>

vector of 16 elements in uint16

Public Functions

inline simd16uint16()
inline explicit simd16uint16(__m256i i)
inline explicit simd16uint16(int x)
inline explicit simd16uint16(uint16_t x)
inline explicit simd16uint16(simd256bit x)
inline explicit simd16uint16(const uint16_t *x)
inline explicit simd16uint16(uint16_t u0, uint16_t u1, uint16_t u2, uint16_t u3, uint16_t u4, uint16_t u5, uint16_t u6, uint16_t u7, uint16_t u8, uint16_t u9, uint16_t u10, uint16_t u11, uint16_t u12, uint16_t u13, uint16_t u14, uint16_t u15)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint16_t x)
inline simd16uint16 operator*(const simd16uint16 &other) const
inline simd16uint16 operator>>(const int shift) const
inline simd16uint16 operator<<(const int shift) const
inline simd16uint16 operator+=(simd16uint16 other)
inline simd16uint16 operator-=(simd16uint16 other)
inline simd16uint16 operator+(simd16uint16 other) const
inline simd16uint16 operator-(simd16uint16 other) const
inline simd16uint16 operator&(simd256bit other) const
inline simd16uint16 operator|(simd256bit other) const
inline simd16uint16 operator^(simd256bit other) const
inline simd16uint16 operator~() const
inline uint16_t get_scalar_0() const
inline uint32_t ge_mask(simd16uint16 thresh) const
inline uint32_t le_mask(simd16uint16 thresh) const
inline uint32_t gt_mask(simd16uint16 thresh) const
inline bool all_gt(simd16uint16 thresh) const
inline uint16_t operator[](int i) const
inline void accu_min(simd16uint16 incoming)
inline void accu_max(simd16uint16 incoming)
inline simd16uint16()
inline explicit simd16uint16(int x)
inline explicit simd16uint16(uint16_t x)
inline explicit simd16uint16(const simd256bit &x)
inline explicit simd16uint16(const uint16_t *x)
inline explicit simd16uint16(uint16_t u0, uint16_t u1, uint16_t u2, uint16_t u3, uint16_t u4, uint16_t u5, uint16_t u6, uint16_t u7, uint16_t u8, uint16_t u9, uint16_t u10, uint16_t u11, uint16_t u12, uint16_t u13, uint16_t u14, uint16_t u15)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint16_t x)
inline simd16uint16 operator*(const simd16uint16 &other) const
inline simd16uint16 operator>>(const int shift) const
inline simd16uint16 operator<<(const int shift) const
inline simd16uint16 operator+=(const simd16uint16 &other)
inline simd16uint16 operator-=(const simd16uint16 &other)
inline simd16uint16 operator+(const simd16uint16 &other) const
inline simd16uint16 operator-(const simd16uint16 &other) const
inline simd16uint16 operator&(const simd256bit &other) const
inline simd16uint16 operator|(const simd256bit &other) const
inline simd16uint16 operator^(const simd256bit &other) const
inline simd16uint16 operator==(const simd16uint16 &other) const
inline simd16uint16 operator~() const
inline uint16_t get_scalar_0() const
inline uint32_t ge_mask(const simd16uint16 &thresh) const
inline uint32_t le_mask(const simd16uint16 &thresh) const
inline uint32_t gt_mask(const simd16uint16 &thresh) const
inline bool all_gt(const simd16uint16 &thresh) const
inline uint16_t operator[](int i) const
inline void accu_min(const simd16uint16 &incoming)
inline void accu_max(const simd16uint16 &incoming)
simd16uint16() = default
inline explicit simd16uint16(int x)
inline explicit simd16uint16(uint16_t x)
inline explicit simd16uint16(const uint16x8x2_t &v)
inline explicit simd16uint16(uint16_t u0, uint16_t u1, uint16_t u2, uint16_t u3, uint16_t u4, uint16_t u5, uint16_t u6, uint16_t u7, uint16_t u8, uint16_t u9, uint16_t u10, uint16_t u11, uint16_t u12, uint16_t u13, uint16_t u14, uint16_t u15)
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline explicit simd16uint16(const T &x)
inline explicit simd16uint16(const uint16_t *x)
inline void clear()
inline void storeu(uint16_t *ptr) const
inline void loadu(const uint16_t *ptr)
inline void store(uint16_t *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint16_t x)
inline simd16uint16 operator*(const simd16uint16 &other) const
inline simd16uint16 operator>>(const int shift) const
inline simd16uint16 operator<<(const int shift) const
inline simd16uint16 operator+=(const simd16uint16 &other)
inline simd16uint16 operator-=(const simd16uint16 &other)
inline simd16uint16 operator+(const simd16uint16 &other) const
inline simd16uint16 operator-(const simd16uint16 &other) const
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline simd16uint16 operator&(const T &other) const
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline simd16uint16 operator|(const T &other) const
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline simd16uint16 operator^(const T &other) const
inline simd16uint16 operator==(const simd16uint16 &other) const
template<typename T>
inline bool is_same_as(T other) const
inline simd16uint16 operator~() const
inline uint16_t get_scalar_0() const
inline uint32_t ge_mask(const simd16uint16 &thresh) const
inline uint32_t le_mask(const simd16uint16 &thresh) const
inline uint32_t gt_mask(const simd16uint16 &thresh) const
inline bool all_gt(const simd16uint16 &thresh) const
inline uint16_t operator[](int i) const
inline void accu_min(const simd16uint16 &incoming)
inline void accu_max(const simd16uint16 &incoming)
inline simd16uint16()
inline explicit simd16uint16(int x)
inline explicit simd16uint16(uint16_t x)
inline explicit simd16uint16(const simd256bit &x)
inline explicit simd16uint16(const uint16_t *x)
inline explicit simd16uint16(uint16_t u0, uint16_t u1, uint16_t u2, uint16_t u3, uint16_t u4, uint16_t u5, uint16_t u6, uint16_t u7, uint16_t u8, uint16_t u9, uint16_t u10, uint16_t u11, uint16_t u12, uint16_t u13, uint16_t u14, uint16_t u15)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint16_t x)
inline simd16uint16 operator*(const simd16uint16 &other) const
inline simd16uint16 operator>>(const int shift) const
inline simd16uint16 operator<<(const int shift) const
inline simd16uint16 operator+=(const simd16uint16 &other)
inline simd16uint16 operator-=(const simd16uint16 &other)
inline simd16uint16 operator+(const simd16uint16 &other) const
inline simd16uint16 operator-(const simd16uint16 &other) const
inline simd16uint16 operator&(const simd256bit &other) const
inline simd16uint16 operator|(const simd256bit &other) const
inline simd16uint16 operator^(const simd256bit &other) const
inline simd16uint16 operator==(const simd16uint16 &other) const
inline simd16uint16 operator~() const
inline uint16_t get_scalar_0() const
inline uint32_t ge_mask(const simd16uint16 &thresh) const
inline uint32_t le_mask(const simd16uint16 &thresh) const
inline uint32_t gt_mask(const simd16uint16 &thresh) const
inline bool all_gt(const simd16uint16 &thresh) const
inline uint16_t operator[](int i) const
inline void accu_min(const simd16uint16 &incoming)
inline void accu_max(const simd16uint16 &incoming)
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline bool is_same_as(simd256bit other) const

Public Members

uint16x8x2_t data
__m256i i
__m256 f
union faiss::simd256bit::[anonymous] [anonymous]
uint8_t u8[32]
uint16_t u16[16]
uint32_t u32[8]
float f32[8]
union faiss::simd256bit::[anonymous] [anonymous]
union faiss::simd256bit::[anonymous] [anonymous]

Public Static Functions

template<typename F>
static inline simd16uint16 unary_func(const simd16uint16 &a, F &&f)
template<typename F>
static inline simd16uint16 binary_func(const simd16uint16 &a, const simd16uint16 &b, F &&f)
template<typename F>
static inline simd16uint16 unary_func(const simd16uint16 &a, F &&f)
template<typename F>
static inline simd16uint16 binary_func(const simd16uint16 &a, const simd16uint16 &b, F &&f)

Friends

inline friend simd16uint16 operator==(const simd256bit lhs, const simd256bit rhs)
struct simd32uint8 : public faiss::simd256bit, public faiss::simd256bit, public faiss::simd256bit

Public Functions

inline simd32uint8()
inline explicit simd32uint8(__m256i i)
inline explicit simd32uint8(int x)
inline explicit simd32uint8(uint8_t x)
inline explicit simd32uint8(simd256bit x)
inline explicit simd32uint8(const uint8_t *x)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint8_t x)
inline simd32uint8 operator&(simd256bit other) const
inline simd32uint8 operator+(simd32uint8 other) const
inline simd32uint8 lookup_2_lanes(simd32uint8 idx) const
inline simd16uint16 lane0_as_uint16() const
inline simd16uint16 lane1_as_uint16() const
inline simd32uint8 operator+=(simd32uint8 other)
inline uint8_t operator[](int i) const
inline simd32uint8()
inline explicit simd32uint8(int x)
inline explicit simd32uint8(uint8_t x)
inline explicit simd32uint8(const simd256bit &x)
inline explicit simd32uint8(const uint8_t *x)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint8_t x)
inline simd32uint8 operator&(const simd256bit &other) const
inline simd32uint8 operator+(const simd32uint8 &other) const
inline simd32uint8 lookup_2_lanes(const simd32uint8 &idx) const
inline simd32uint8 operator+=(const simd32uint8 &other)
inline uint8_t operator[](int i) const
simd32uint8() = default
inline explicit simd32uint8(int x)
inline explicit simd32uint8(uint8_t x)
inline explicit simd32uint8(const uint8x16x2_t &v)
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline explicit simd32uint8(const T &x)
inline explicit simd32uint8(const uint8_t *x)
inline void clear()
inline void storeu(uint8_t *ptr) const
inline void loadu(const uint8_t *ptr)
inline void store(uint8_t *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint8_t x)
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline simd32uint8 operator&(const T &other) const
inline simd32uint8 operator+(const simd32uint8 &other) const
inline simd32uint8 lookup_2_lanes(const simd32uint8 &idx) const
inline simd32uint8 operator+=(const simd32uint8 &other)
inline uint8_t operator[](int i) const
template<typename T>
inline bool is_same_as(T other) const
inline simd32uint8()
inline explicit simd32uint8(int x)
inline explicit simd32uint8(uint8_t x)
inline explicit simd32uint8(const simd256bit &x)
inline explicit simd32uint8(const uint8_t *x)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint8_t x)
inline simd32uint8 operator&(const simd256bit &other) const
inline simd32uint8 operator+(const simd32uint8 &other) const
inline simd32uint8 lookup_2_lanes(const simd32uint8 &idx) const
inline simd32uint8 operator+=(const simd32uint8 &other)
inline uint8_t operator[](int i) const
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline bool is_same_as(simd256bit other) const

Public Members

uint8x16x2_t data
__m256i i
__m256 f
union faiss::simd256bit::[anonymous] [anonymous]
uint8_t u8[32]
uint16_t u16[16]
uint32_t u32[8]
float f32[8]
union faiss::simd256bit::[anonymous] [anonymous]
union faiss::simd256bit::[anonymous] [anonymous]

Public Static Functions

template<uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7, uint8_t _8, uint8_t _9, uint8_t _10, uint8_t _11, uint8_t _12, uint8_t _13, uint8_t _14, uint8_t _15, uint8_t _16, uint8_t _17, uint8_t _18, uint8_t _19, uint8_t _20, uint8_t _21, uint8_t _22, uint8_t _23, uint8_t _24, uint8_t _25, uint8_t _26, uint8_t _27, uint8_t _28, uint8_t _29, uint8_t _30, uint8_t _31>
static inline simd32uint8 create()
template<uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7, uint8_t _8, uint8_t _9, uint8_t _10, uint8_t _11, uint8_t _12, uint8_t _13, uint8_t _14, uint8_t _15, uint8_t _16, uint8_t _17, uint8_t _18, uint8_t _19, uint8_t _20, uint8_t _21, uint8_t _22, uint8_t _23, uint8_t _24, uint8_t _25, uint8_t _26, uint8_t _27, uint8_t _28, uint8_t _29, uint8_t _30, uint8_t _31>
static inline simd32uint8 create()
template<typename F>
static inline simd32uint8 binary_func(const simd32uint8 &a, const simd32uint8 &b, F &&f)
template<uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7, uint8_t _8, uint8_t _9, uint8_t _10, uint8_t _11, uint8_t _12, uint8_t _13, uint8_t _14, uint8_t _15, uint8_t _16, uint8_t _17, uint8_t _18, uint8_t _19, uint8_t _20, uint8_t _21, uint8_t _22, uint8_t _23, uint8_t _24, uint8_t _25, uint8_t _26, uint8_t _27, uint8_t _28, uint8_t _29, uint8_t _30, uint8_t _31>
static inline simd32uint8 create()
template<uint8_t _0, uint8_t _1, uint8_t _2, uint8_t _3, uint8_t _4, uint8_t _5, uint8_t _6, uint8_t _7, uint8_t _8, uint8_t _9, uint8_t _10, uint8_t _11, uint8_t _12, uint8_t _13, uint8_t _14, uint8_t _15, uint8_t _16, uint8_t _17, uint8_t _18, uint8_t _19, uint8_t _20, uint8_t _21, uint8_t _22, uint8_t _23, uint8_t _24, uint8_t _25, uint8_t _26, uint8_t _27, uint8_t _28, uint8_t _29, uint8_t _30, uint8_t _31>
static inline simd32uint8 create()
template<typename F>
static inline simd32uint8 binary_func(const simd32uint8 &a, const simd32uint8 &b, F &&f)
struct simd8uint32 : public faiss::simd256bit, public faiss::simd256bit, public faiss::simd256bit
#include <simdlib_avx2.h>

vector of 8 unsigned 32-bit integers

Public Functions

inline simd8uint32()
inline explicit simd8uint32(__m256i i)
inline explicit simd8uint32(uint32_t x)
inline explicit simd8uint32(simd256bit x)
inline explicit simd8uint32(const uint8_t *x)
inline explicit simd8uint32(uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3, uint32_t u4, uint32_t u5, uint32_t u6, uint32_t u7)
inline simd8uint32 operator+(simd8uint32 other) const
inline simd8uint32 operator-(simd8uint32 other) const
inline simd8uint32 &operator+=(const simd8uint32 &other)
inline bool operator==(simd8uint32 other) const
inline bool operator!=(simd8uint32 other) const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint32_t x)
inline simd8uint32 unzip() const
inline simd8uint32()
inline explicit simd8uint32(uint32_t x)
inline explicit simd8uint32(const simd256bit &x)
inline explicit simd8uint32(const uint32_t *x)
inline explicit simd8uint32(uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3, uint32_t u4, uint32_t u5, uint32_t u6, uint32_t u7)
inline simd8uint32 operator+(simd8uint32 other) const
inline simd8uint32 operator-(simd8uint32 other) const
inline simd8uint32 &operator+=(const simd8uint32 &other)
inline bool operator==(simd8uint32 other) const
inline bool operator!=(simd8uint32 other) const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint32_t x)
inline simd8uint32 unzip() const
simd8uint32() = default
inline explicit simd8uint32(uint32_t x)
inline explicit simd8uint32(const uint32x4x2_t &v)
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline explicit simd8uint32(const T &x)
inline explicit simd8uint32(const uint8_t *x)
inline explicit simd8uint32(uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3, uint32_t u4, uint32_t u5, uint32_t u6, uint32_t u7)
inline simd8uint32 operator+(simd8uint32 other) const
inline simd8uint32 operator-(simd8uint32 other) const
inline simd8uint32 &operator+=(const simd8uint32 &other)
inline simd8uint32 operator==(simd8uint32 other) const
inline simd8uint32 operator~() const
inline simd8uint32 operator!=(simd8uint32 other) const
template<typename T>
inline bool is_same_as(T other) const
inline void clear()
inline void storeu(uint32_t *ptr) const
inline void loadu(const uint32_t *ptr)
inline void store(uint32_t *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint32_t x)
inline simd8uint32 unzip() const
inline simd8uint32()
inline explicit simd8uint32(uint32_t x)
inline explicit simd8uint32(const simd256bit &x)
inline explicit simd8uint32(const uint32_t *x)
inline explicit simd8uint32(uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3, uint32_t u4, uint32_t u5, uint32_t u6, uint32_t u7)
inline simd8uint32 operator+(simd8uint32 other) const
inline simd8uint32 operator-(simd8uint32 other) const
inline simd8uint32 &operator+=(const simd8uint32 &other)
inline bool operator==(simd8uint32 other) const
inline bool operator!=(simd8uint32 other) const
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint32_t x)
inline simd8uint32 unzip() const
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline bool is_same_as(simd256bit other) const

Public Members

uint32x4x2_t data
__m256i i
__m256 f
union faiss::simd256bit::[anonymous] [anonymous]
uint8_t u8[32]
uint16_t u16[16]
uint32_t u32[8]
float f32[8]
union faiss::simd256bit::[anonymous] [anonymous]
union faiss::simd256bit::[anonymous] [anonymous]
struct simd8float32 : public faiss::simd256bit, public faiss::simd256bit, public faiss::simd256bit

Public Functions

inline simd8float32()
inline explicit simd8float32(simd256bit x)
inline explicit simd8float32(__m256 x)
inline explicit simd8float32(float x)
inline explicit simd8float32(const float *x)
inline explicit simd8float32(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7)
inline simd8float32 operator*(simd8float32 other) const
inline simd8float32 operator+(simd8float32 other) const
inline simd8float32 operator-(simd8float32 other) const
inline simd8float32 &operator+=(const simd8float32 &other)
inline bool operator==(simd8float32 other) const
inline bool operator!=(simd8float32 other) const
inline std::string tostring() const
inline simd8float32()
inline explicit simd8float32(const simd256bit &x)
inline explicit simd8float32(float x)
inline explicit simd8float32(const float *x)
inline void set1(float x)
inline explicit simd8float32(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7)
inline simd8float32 operator*(const simd8float32 &other) const
inline simd8float32 operator+(const simd8float32 &other) const
inline simd8float32 operator-(const simd8float32 &other) const
inline simd8float32 &operator+=(const simd8float32 &other)
inline bool operator==(simd8float32 other) const
inline bool operator!=(simd8float32 other) const
inline std::string tostring() const
simd8float32() = default
inline explicit simd8float32(float x)
inline explicit simd8float32(const float32x4x2_t &v)
template<typename T, typename std::enable_if<detail::simdlib::is_simd256bit<T>::value, std::nullptr_t>::type = nullptr>
inline explicit simd8float32(const T &x)
inline explicit simd8float32(const float *x)
inline explicit simd8float32(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7)
inline void clear()
inline void storeu(float *ptr) const
inline void loadu(const float *ptr)
inline void store(float *ptr) const
inline void bin(char bits[257]) const
inline std::string bin() const
inline simd8float32 operator*(const simd8float32 &other) const
inline simd8float32 operator+(const simd8float32 &other) const
inline simd8float32 operator-(const simd8float32 &other) const
inline simd8float32 &operator+=(const simd8float32 &other)
inline simd8uint32 operator==(simd8float32 other) const
inline simd8uint32 operator!=(simd8float32 other) const
template<typename T>
inline bool is_same_as(T other) const
inline std::string tostring() const
inline simd8float32()
inline explicit simd8float32(const simd256bit &x)
inline explicit simd8float32(float x)
inline explicit simd8float32(const float *x)
inline void set1(float x)
inline explicit simd8float32(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7)
inline simd8float32 operator*(const simd8float32 &other) const
inline simd8float32 operator+(const simd8float32 &other) const
inline simd8float32 operator-(const simd8float32 &other) const
inline simd8float32 &operator+=(const simd8float32 &other)
inline bool operator==(simd8float32 other) const
inline bool operator!=(simd8float32 other) const
inline std::string tostring() const
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline bool is_same_as(simd256bit other) const

Public Members

float32x4x2_t data
__m256i i
__m256 f
union faiss::simd256bit::[anonymous] [anonymous]
uint8_t u8[32]
uint16_t u16[16]
uint32_t u32[8]
float f32[8]
union faiss::simd256bit::[anonymous] [anonymous]
union faiss::simd256bit::[anonymous] [anonymous]

Public Static Functions

template<typename F>
static inline simd8float32 binary_func(const simd8float32 &a, const simd8float32 &b, F &&f)
template<typename F>
static inline simd8float32 binary_func(const simd8float32 &a, const simd8float32 &b, F &&f)
struct simd512bit
#include <simdlib_avx512.h>

512-bit representation without interpretation as a vector

Simple wrapper around the AVX 512-bit registers

The objective is to separate the different interpretations of the same registers (as a vector of uint8, uint16 or uint32), to provide printing functions, and to give more readable names to the AVX intrinsics. It does not pretend to be exhausitve, functions are added as needed.

Subclassed by faiss::simd32uint16, faiss::simd64uint8

Public Functions

inline simd512bit()
inline explicit simd512bit(__m512i i)
inline explicit simd512bit(__m512 f)
inline explicit simd512bit(const void *x)
inline explicit simd512bit(simd256bit lo)
inline explicit simd512bit(simd256bit lo, simd256bit hi)
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[513]) const
inline std::string bin() const

Public Members

__m512i i
__m512 f
union faiss::simd512bit::[anonymous] [anonymous]
struct simd32uint16 : public faiss::simd512bit
#include <simdlib_avx512.h>

vector of 32 elements in uint16

Public Functions

inline simd32uint16()
inline explicit simd32uint16(__m512i i)
inline explicit simd32uint16(int x)
inline explicit simd32uint16(uint16_t x)
inline explicit simd32uint16(simd512bit x)
inline explicit simd32uint16(const uint16_t *x)
inline explicit simd32uint16(simd256bit lo)
inline explicit simd32uint16(simd256bit lo, simd256bit hi)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint16_t x)
inline simd32uint16 operator*(const simd32uint16 &other) const
inline simd32uint16 operator>>(const int shift) const
inline simd32uint16 operator<<(const int shift) const
inline simd32uint16 operator+=(simd32uint16 other)
inline simd32uint16 operator-=(simd32uint16 other)
inline simd32uint16 operator+(simd32uint16 other) const
inline simd32uint16 operator-(simd32uint16 other) const
inline simd32uint16 operator&(simd512bit other) const
inline simd32uint16 operator|(simd512bit other) const
inline simd32uint16 operator^(simd512bit other) const
inline simd32uint16 operator~() const
inline simd16uint16 low() const
inline simd16uint16 high() const
inline uint16_t operator[](int i) const
inline void accu_min(simd32uint16 incoming)
inline void accu_max(simd32uint16 incoming)
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[513]) const
inline std::string bin() const

Public Members

__m512i i
__m512 f
union faiss::simd512bit::[anonymous] [anonymous]
struct simd64uint8 : public faiss::simd512bit

Public Functions

inline simd64uint8()
inline explicit simd64uint8(__m512i i)
inline explicit simd64uint8(int x)
inline explicit simd64uint8(uint8_t x)
inline explicit simd64uint8(simd256bit lo)
inline explicit simd64uint8(simd256bit lo, simd256bit hi)
inline explicit simd64uint8(simd512bit x)
inline explicit simd64uint8(const uint8_t *x)
inline std::string elements_to_string(const char *fmt) const
inline std::string hex() const
inline std::string dec() const
inline void set1(uint8_t x)
inline simd64uint8 operator&(simd512bit other) const
inline simd64uint8 operator+(simd64uint8 other) const
inline simd64uint8 lookup_4_lanes(simd64uint8 idx) const
inline simd32uint16 lane0_as_uint16() const
inline simd32uint16 lane1_as_uint16() const
inline simd64uint8 operator+=(simd64uint8 other)
inline uint8_t operator[](int i) const
inline void clear()
inline void storeu(void *ptr) const
inline void loadu(const void *ptr)
inline void store(void *ptr) const
inline void bin(char bits[513]) const
inline std::string bin() const

Public Members

__m512i i
__m512 f
union faiss::simd512bit::[anonymous] [anonymous]
template<typename T>
struct CombinerRangeKNN
#include <utils.h>

This class is used to combine range and knn search results in contrib.exhaustive_search.range_search_gpu

Public Functions

inline CombinerRangeKNN(int64_t nq, size_t k, T r2, bool keep_max)

whether to keep max values instead of min.

void compute_sizes(int64_t *L_res)

size nq + 1

void write_result(T *D_res, int64_t *I_res)

Phase 2: caller allocates D_res and I_res (size L_res[nq]) Phase 3: fill in D_res and I_res

Public Members

int64_t nq
size_t k

nb of queries

T r2

number of neighbors for the knn search part

bool keep_max

range search radius

const int64_t *I = nullptr

Knn search results.

const T *D = nullptr

size nq * k

const bool *mask = nullptr

size nq * k

optional: range search results (ignored if mask is NULL)

const int64_t *lim_remain = nullptr

mask for where knn results are valid, size nq

const T *D_remain = nullptr

size nrange + 1

const int64_t *I_remain = nullptr

size lim_remain[nrange]

const int64_t *L_res = nullptr

size lim_remain[nrange]

struct CodeSet

Public Functions

inline explicit CodeSet(size_t d)
void insert(size_t n, const uint8_t *codes, bool *inserted)

Public Members

size_t d
std::set<std::vector<uint8_t>> s
class WorkerThread

Public Functions

WorkerThread()
~WorkerThread()

Stops and waits for the worker thread to exit, flushing all pending lambdas

void stop()

Request that the worker thread stop itself.

void waitForThreadExit()

Blocking waits in the current thread for the worker thread to stop

std::future<bool> add(std::function<void()> f)

Adds a lambda to run on the worker thread; returns a future that can be used to block on its completion. Future status is true if the lambda was run in the worker thread; false if it was not run, because the worker thread is exiting or has exited.

Private Functions

void startThread()
void threadMain()
void threadLoop()

Private Members

std::thread thread_

Thread that all queued lambdas are run on.

std::mutex mutex_

Mutex for the queue and exit status.

std::condition_variable monitor_

Monitor for the exit status and the queue.

bool wantStop_

Whether or not we want the thread to exit.

std::deque<std::pair<std::function<void()>, std::promise<bool>>> queue_

Queue of pending lambdas to call.

struct VectorTransform
#include <VectorTransform.h>

Any transformation applied on a set of vectors

Subclassed by faiss::CenteringTransform, faiss::ITQTransform, faiss::LinearTransform, faiss::NormalizationTransform, faiss::RemapDimensionsTransform

Public Functions

inline explicit VectorTransform(int d_in = 0, int d_out = 0)

! output dimension

virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const = 0

apply the transformation and return the result in a provided matrix

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

  • xt – output vectors, size n * d_out

virtual void reverse_transform(idx_t n, const float *xt, float *x) const

reverse transformation. May not be implemented or may return approximate result

virtual void check_identical(const VectorTransform &other) const = 0
inline virtual ~VectorTransform()

Public Members

int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct LinearTransform : public faiss::VectorTransform
#include <VectorTransform.h>

Generic linear transformation, with bias term applied on output y = A * x + b

Subclassed by faiss::ITQMatrix, faiss::OPQMatrix, faiss::PCAMatrix, faiss::RandomRotationMatrix

Public Functions

explicit LinearTransform(int d_in = 0, int d_out = 0, bool have_bias = false)

both d_in > d_out and d_out < d_in are supported

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

same as apply, but result is pre-allocated

void transform_transpose(idx_t n, const float *y, float *x) const

compute x = A^T * (x - b) is reverse transform if A has orthonormal lines

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

works only if is_orthonormal

void set_is_orthonormal()

compute A^T * A to set the is_orthonormal flag

void print_if_verbose(const char *name, const std::vector<double> &mat, int n, int d) const
virtual void check_identical(const VectorTransform &other) const override
inline ~LinearTransform() override
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

bool have_bias
bool is_orthonormal

! whether to use the bias term

check if matrix A is orthonormal (enables reverse_transform)

std::vector<float> A

Transformation matrix, size d_out * d_in.

std::vector<float> b

bias vector, size d_out

bool verbose
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct RandomRotationMatrix : public faiss::LinearTransform
#include <VectorTransform.h>

Randomly rotate a set of vectors.

Public Functions

inline RandomRotationMatrix(int d_in, int d_out)

both d_in > d_out and d_out < d_in are supported

void init(int seed)

must be called before the transform is used

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

inline RandomRotationMatrix()
virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

same as apply, but result is pre-allocated

void transform_transpose(idx_t n, const float *y, float *x) const

compute x = A^T * (x - b) is reverse transform if A has orthonormal lines

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

works only if is_orthonormal

void set_is_orthonormal()

compute A^T * A to set the is_orthonormal flag

void print_if_verbose(const char *name, const std::vector<double> &mat, int n, int d) const
virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

bool have_bias
bool is_orthonormal

! whether to use the bias term

check if matrix A is orthonormal (enables reverse_transform)

std::vector<float> A

Transformation matrix, size d_out * d_in.

std::vector<float> b

bias vector, size d_out

bool verbose
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct PCAMatrix : public faiss::LinearTransform
#include <VectorTransform.h>

Applies a principal component analysis on a set of vectors, with optionally whitening and random rotation.

Public Functions

explicit PCAMatrix(int d_in = 0, int d_out = 0, float eigen_power = 0, bool random_rotation = false)
virtual void train(idx_t n, const float *x) override

train on n vectors. If n < d_in then the eigenvector matrix will be completed with 0s

void copy_from(const PCAMatrix &other)

copy pre-trained PCA matrix

void prepare_Ab()

called after mean, PCAMat and eigenvalues are computed

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

same as apply, but result is pre-allocated

void transform_transpose(idx_t n, const float *y, float *x) const

compute x = A^T * (x - b) is reverse transform if A has orthonormal lines

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

works only if is_orthonormal

void set_is_orthonormal()

compute A^T * A to set the is_orthonormal flag

void print_if_verbose(const char *name, const std::vector<double> &mat, int n, int d) const
virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

float eigen_power

after transformation the components are multiplied by eigenvalues^eigen_power

=0: no whitening =-0.5: full whitening

float epsilon

value added to eigenvalues to avoid division by 0 when whitening

bool random_rotation

random rotation after PCA

size_t max_points_per_d

ratio between # training vectors and dimension

int balanced_bins

try to distribute output eigenvectors in this many bins

std::vector<float> mean

Mean, size d_in.

std::vector<float> eigenvalues

eigenvalues of covariance matrix (= squared singular values)

std::vector<float> PCAMat

PCA matrix, size d_in * d_in.

bool have_bias
bool is_orthonormal

! whether to use the bias term

check if matrix A is orthonormal (enables reverse_transform)

std::vector<float> A

Transformation matrix, size d_out * d_in.

std::vector<float> b

bias vector, size d_out

bool verbose
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct ITQMatrix : public faiss::LinearTransform
#include <VectorTransform.h>

ITQ implementation from

Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval,

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, Florent Perronnin, PAMI’12.

Public Functions

explicit ITQMatrix(int d = 0)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

same as apply, but result is pre-allocated

void transform_transpose(idx_t n, const float *y, float *x) const

compute x = A^T * (x - b) is reverse transform if A has orthonormal lines

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

works only if is_orthonormal

void set_is_orthonormal()

compute A^T * A to set the is_orthonormal flag

void print_if_verbose(const char *name, const std::vector<double> &mat, int n, int d) const
virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

int max_iter
int seed
std::vector<double> init_rotation
bool have_bias
bool is_orthonormal

! whether to use the bias term

check if matrix A is orthonormal (enables reverse_transform)

std::vector<float> A

Transformation matrix, size d_out * d_in.

std::vector<float> b

bias vector, size d_out

bool verbose
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct ITQTransform : public faiss::VectorTransform
#include <VectorTransform.h>

The full ITQ transform, including normalizations and PCA transformation

Public Functions

explicit ITQTransform(int d_in = 0, int d_out = 0, bool do_pca = false)
virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

apply the transformation and return the result in a provided matrix

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

  • xt – output vectors, size n * d_out

virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

virtual void reverse_transform(idx_t n, const float *xt, float *x) const

reverse transformation. May not be implemented or may return approximate result

Public Members

std::vector<float> mean
bool do_pca
ITQMatrix itq
int max_train_per_dim

max training points per dimension

LinearTransform pca_then_itq
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct OPQMatrix : public faiss::LinearTransform
#include <VectorTransform.h>

Applies a rotation to align the dimensions with a PQ to minimize the reconstruction error. Can be used before an IndexPQ or an IndexIVFPQ. The method is the non-parametric version described in:

“Optimized Product Quantization for Approximate Nearest Neighbor Search” Tiezheng Ge, Kaiming He, Qifa Ke, Jian Sun, CVPR’13

Public Functions

explicit OPQMatrix(int d = 0, int M = 1, int d2 = -1)

if d2 != -1, output vectors of this dimension

virtual void train(idx_t n, const float *x) override

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

same as apply, but result is pre-allocated

void transform_transpose(idx_t n, const float *y, float *x) const

compute x = A^T * (x - b) is reverse transform if A has orthonormal lines

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

works only if is_orthonormal

void set_is_orthonormal()

compute A^T * A to set the is_orthonormal flag

void print_if_verbose(const char *name, const std::vector<double> &mat, int n, int d) const
virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

int M

nb of subquantizers

int niter = 50

Number of outer training iterations.

int niter_pq = 4

Number of training iterations for the PQ.

int niter_pq_0 = 40

same, for the first outer iteration

size_t max_train_points = 256 * 256

if there are too many training points, resample

bool verbose = false
ProductQuantizer *pq = nullptr

if non-NULL, use this product quantizer for training should be constructed with (d_out, M, _)

bool have_bias
bool is_orthonormal

! whether to use the bias term

check if matrix A is orthonormal (enables reverse_transform)

std::vector<float> A

Transformation matrix, size d_out * d_in.

std::vector<float> b

bias vector, size d_out

int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct RemapDimensionsTransform : public faiss::VectorTransform
#include <VectorTransform.h>

remap dimensions for intput vectors, possibly inserting 0s strictly speaking this is also a linear transform but we don’t want to compute it with matrix multiplies

Public Functions

RemapDimensionsTransform(int d_in, int d_out, const int *map)
RemapDimensionsTransform(int d_in, int d_out, bool uniform = true)

remap input to output, skipping or inserting dimensions as needed if uniform: distribute dimensions uniformly otherwise just take the d_out first ones.

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

apply the transformation and return the result in a provided matrix

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

  • xt – output vectors, size n * d_out

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

reverse transform correct only when the mapping is a permutation

inline RemapDimensionsTransform()
virtual void check_identical(const VectorTransform &other) const override
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

std::vector<int> map

map from output dimension to input, size d_out -1 -> set output to 0

int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct NormalizationTransform : public faiss::VectorTransform
#include <VectorTransform.h>

per-vector normalization

Public Functions

explicit NormalizationTransform(int d, float norm = 2.0)
NormalizationTransform()
virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

apply the transformation and return the result in a provided matrix

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

  • xt – output vectors, size n * d_out

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

Identity transform since norm is not revertible.

virtual void check_identical(const VectorTransform &other) const override
virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors. Does nothing by default.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

float norm
int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

struct CenteringTransform : public faiss::VectorTransform
#include <VectorTransform.h>

Subtract the mean of each component from the vectors.

Public Functions

explicit CenteringTransform(int d = 0)
virtual void train(idx_t n, const float *x) override

train on n vectors.

virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override

subtract the mean

virtual void reverse_transform(idx_t n, const float *xt, float *x) const override

add the mean

virtual void check_identical(const VectorTransform &other) const override
float *apply(idx_t n, const float *x) const

apply the transformation and return the result in an allocated pointer

Parameters:
  • n – number of vectors to transform

  • x – input vectors, size n * d_in

Returns:

output vectors, size n * d_out

Public Members

std::vector<float> mean

Mean, size d_in = d_out.

int d_in
int d_out

! input dimension

bool is_trained

set if the VectorTransform does not require training, or if training is done already

namespace cppcontrib

Functions

bool isBigEndian()
template<intptr_t DIM, intptr_t COARSE_SIZE, intptr_t FINE_SIZE, intptr_t COARSE_BITS = 8, intptr_t FINE_BITS = 8>
struct Index2LevelDecoder
#include <Level2-inl.h>

Index2LevelDecoder.

Public Types

using coarse_storage_type = typename detail::CoarseBitType<COARSE_BITS>::bit_type

Public Static Functions

static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)

Public Static Attributes

static constexpr intptr_t dim = DIM
static constexpr intptr_t coarseSize = COARSE_SIZE
static constexpr intptr_t fineSize = FINE_SIZE
static constexpr intptr_t coarseBits = COARSE_BITS
static constexpr intptr_t fineBits = FINE_BITS
static constexpr intptr_t COARSE_TABLE_BYTES = (1 << COARSE_BITS)
static constexpr intptr_t FINE_TABLE_BYTES = (1 << FINE_BITS)
template<typename SubIndexT>
struct IndexMinMaxDecoder

Public Static Functions

static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)

Public Static Attributes

static constexpr intptr_t dim = SubIndexT::dim
template<typename SubIndexT>
struct IndexMinMaxFP16Decoder

Public Static Functions

static inline void store (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids0, const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqCoarseCentroids1, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqCoarseCentroids2, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqCoarseCentroids, const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum, float &minvAccum)

Public Static Attributes

static constexpr intptr_t dim = SubIndexT::dim
template<intptr_t DIM, intptr_t FINE_SIZE, intptr_t FINE_BITS = 8>
struct IndexPQDecoder
#include <PQ-inl.h>

IndexPQDecoder.

Public Static Functions

static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void store (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, float *const __restrict outputStore)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code, const float weight, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids0, const uint8_t *const __restrict code0, const float weight0, const float *const __restrict pqFineCentroids1, const uint8_t *const __restrict code1, const float weight1, const float *const __restrict pqFineCentroids2, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)
static inline void accum (const float *const __restrict pqFineCentroids, const uint8_t *const __restrict code0, const float weight0, const uint8_t *const __restrict code1, const float weight1, const uint8_t *const __restrict code2, const float weight2, float *const __restrict outputAccum)

Public Static Attributes

static constexpr intptr_t dim = DIM
static constexpr intptr_t fineSize = FINE_SIZE
static constexpr intptr_t fineBits = FINE_BITS
static constexpr intptr_t FINE_TABLE_BYTES = (1 << FINE_BITS)
namespace detail

Typedefs

template<intptr_t DIM, intptr_t CODE_SIZE, intptr_t CODE_BITS, intptr_t CPOS>
using UintReader = typename UintReaderImplType<DIM / CODE_SIZE, CODE_BITS, CPOS>::reader_type
template<intptr_t N_ELEMENTS, intptr_t CODE_BITS, intptr_t CPOS>
using UintReaderRaw = typename UintReaderImplType<N_ELEMENTS, CODE_BITS, CPOS>::reader_type
template<int COARSE_BITS>
struct CoarseBitType
template<>
struct CoarseBitType<8>

Public Types

using bit_type = uint8_t
template<>
struct CoarseBitType<16>

Public Types

using bit_type = uint16_t
namespace detail
namespace simdlib

Typedefs

template<typename T>
using remove_cv_ref_t = typename std::remove_reference<typename std::remove_cv<T>::type>::type

Functions

static inline uint8x16x2_t reinterpret_u8(const uint8x16x2_t &v)
static inline uint8x16x2_t reinterpret_u8(const uint16x8x2_t &v)
static inline uint8x16x2_t reinterpret_u8(const uint32x4x2_t &v)
static inline uint8x16x2_t reinterpret_u8(const float32x4x2_t &v)
static inline uint16x8x2_t reinterpret_u16(const uint8x16x2_t &v)
static inline uint16x8x2_t reinterpret_u16(const uint16x8x2_t &v)
static inline uint16x8x2_t reinterpret_u16(const uint32x4x2_t &v)
static inline uint16x8x2_t reinterpret_u16(const float32x4x2_t &v)
static inline uint32x4x2_t reinterpret_u32(const uint8x16x2_t &v)
static inline uint32x4x2_t reinterpret_u32(const uint16x8x2_t &v)
static inline uint32x4x2_t reinterpret_u32(const uint32x4x2_t &v)
static inline uint32x4x2_t reinterpret_u32(const float32x4x2_t &v)
static inline float32x4x2_t reinterpret_f32(const uint8x16x2_t &v)
static inline float32x4x2_t reinterpret_f32(const uint16x8x2_t &v)
static inline float32x4x2_t reinterpret_f32(const uint32x4x2_t &v)
static inline float32x4x2_t reinterpret_f32(const float32x4x2_t &v)
static inline ::uint16x8_t vdupq_n_u16(std::uint16_t v)
static inline ::uint8x16_t vdupq_n_u8(std::uint8_t v)
static inline void bin(const char (&bytes)[32], char bits[257])
template<typename T, size_t N, typename S>
static inline void bin(const S &simd, char bits[257])
template<typename S>
static inline std::string bin(const S &simd)
template<typename D, typename T>
static inline set1_impl<remove_cv_ref_t<D>, T> set1(D &d, T t)
template<typename T, size_t N, typename S>
static inline std::string elements_to_string(const char *fmt, const S &simd)
template<typename T>
static inline unary_func_impl<remove_cv_ref_t<T>, remove_cv_ref_t<T>> unary_func(const T &a)
template<typename T, typename U>
static inline unary_func_impl<remove_cv_ref_t<T>, remove_cv_ref_t<U>> unary_func(const U &a)
template<typename T>
static inline binary_func_impl<remove_cv_ref_t<T>, remove_cv_ref_t<T>> binary_func(const T &a, const T &b)
template<typename T, typename U>
static inline binary_func_impl<remove_cv_ref_t<T>, remove_cv_ref_t<U>> binary_func(const U &a, const U &b)
static inline uint16_t vmovmask_u8(const uint8x16_t &v)
template<uint16x8_t (*F)(uint16x8_t, uint16x8_t)>
static inline uint32_t cmp_xe32(const uint16x8x2_t &d0, const uint16x8x2_t &d1, const uint16x8x2_t &thr)
template<std::uint8_t Shift>
static inline uint16x8_t vshlq(uint16x8_t vec)
template<std::uint8_t Shift>
static inline uint16x8_t vshrq(uint16x8_t vec)
template<typename T, typename U = decltype(reinterpret_u8(std::declval<T>().data))>
struct is_simd256bit : public std::is_same<decltype(reinterpret_u8(std::declval<T>().data)), uint8x16x2_t>
template<typename D, typename T>
struct set1_impl

Public Functions

template<remove_cv_ref_t<decltype(std::declval<D>().val[0])> (*F)(T)>
inline void call()

Public Members

D &d
T t
template<typename T, typename U>
struct unary_func_impl

Public Types

using Telem = remove_cv_ref_t<decltype(std::declval<T>().val[0])>
using Uelem = remove_cv_ref_t<decltype(std::declval<U>().val[0])>

Public Functions

template<Telem (*F)(Uelem)>
inline T call()

Public Members

const U &a
template<typename T, typename U>
struct binary_func_impl

Public Types

using Telem = remove_cv_ref_t<decltype(std::declval<T>().val[0])>
using Uelem = remove_cv_ref_t<decltype(std::declval<U>().val[0])>

Public Functions

template<Telem (*F)(Uelem, Uelem)>
inline T call()

Public Members

const U &a
const U &b
namespace gpu

Enums

enum class DistanceDataType

Values:

enumerator F32
enumerator F16
enumerator BF16
enum class IndicesDataType

Values:

enumerator I64
enumerator I32
enum class graph_build_algo

Values:

enumerator IVF_PQ

Use IVF-PQ to build all-neighbors knn graph.

enumerator NN_DESCENT

Use NN-Descent to build all-neighbors knn graph.

enum class codebook_gen

A type for specifying how PQ codebooks are created.

Values:

enumerator PER_SUBSPACE
enumerator PER_CLUSTER
enum class search_algo

Values:

enumerator SINGLE_CTA

For large batch sizes.

enumerator MULTI_CTA

For small batch sizes.

enumerator MULTI_KERNEL
enumerator AUTO
enum class hash_mode

Values:

enumerator HASH
enumerator SMALL
enumerator AUTO
enum IndicesOptions

How user vector index data is stored on the GPU.

Values:

enumerator INDICES_CPU

The user indices are only stored on the CPU; the GPU returns (inverted list, offset) to the CPU which is then translated to the real user index.

enumerator INDICES_IVF

The indices are not stored at all, on either the CPU or GPU. Only (inverted list, offset) is returned to the user as the index.

enumerator INDICES_32_BIT

Indices are stored as 32 bit integers on the GPU, but returned as 64 bit integers

enumerator INDICES_64_BIT

Indices are stored as 64 bit integers on the GPU.

enum AllocType

Values:

enumerator Other

Unknown allocation type or miscellaneous (not currently categorized)

enumerator FlatData

Primary data storage for GpuIndexFlat (the raw matrix of vectors and vector norms if needed)

enumerator IVFLists

Primary data storage for GpuIndexIVF* (the storage for each individual IVF list)

enumerator Quantizer

Quantizer (PQ, SQ) dictionary information.

enumerator QuantizerPrecomputedCodes

For GpuIndexIVFPQ, “precomputed codes” for more efficient PQ lookup require the use of possibly large tables. These are marked separately from Quantizer as these can frequently be 100s - 1000s of MiB in size

enumerator TemporaryMemoryBuffer

StandardGpuResources implementation specific types When using StandardGpuResources, temporary memory allocations (MemorySpace::Temporary) come out of a stack region of memory that is allocated up front for each gpu (e.g., 1.5 GiB upon initialization). This allocation by StandardGpuResources is marked with this AllocType.

enumerator TemporaryMemoryOverflow

When using StandardGpuResources, any MemorySpace::Temporary allocations that cannot be satisfied within the TemporaryMemoryBuffer region fall back to calling cudaMalloc which are sized to just the request at hand. These “overflow” temporary allocations are marked with this AllocType.

enum MemorySpace

Memory regions accessible to the GPU.

Values:

enumerator Temporary

Temporary device memory (guaranteed to no longer be used upon exit of a top-level index call, and where the streams using it have completed GPU work). Typically backed by Device memory (cudaMalloc/cudaFree).

enumerator Device

Managed using cudaMalloc/cudaFree (typical GPU device memory)

enumerator Unified

Managed using cudaMallocManaged/cudaFree (typical Unified CPU/GPU memory)

Functions

faiss::Index *index_gpu_to_cpu(const faiss::Index *gpu_index)

converts any GPU index inside gpu_index to a CPU index

faiss::Index *index_cpu_to_gpu(GpuResourcesProvider *provider, int device, const faiss::Index *index, const GpuClonerOptions *options = nullptr)

converts any CPU index that can be converted to GPU

faiss::Index *index_cpu_to_gpu_multiple(std::vector<GpuResourcesProvider*> &provider, std::vector<int> &devices, const faiss::Index *index, const GpuMultipleClonerOptions *options = nullptr)
faiss::IndexBinary *index_binary_gpu_to_cpu(const faiss::IndexBinary *gpu_index)
faiss::IndexBinary *index_binary_cpu_to_gpu(GpuResourcesProvider *provider, int device, const faiss::IndexBinary *index, const GpuClonerOptions *options = nullptr)

converts any CPU index that can be converted to GPU

faiss::IndexBinary *index_binary_cpu_to_gpu_multiple(std::vector<GpuResourcesProvider*> &provider, std::vector<int> &devices, const faiss::IndexBinary *index, const GpuMultipleClonerOptions *options = nullptr)
bool should_use_cuvs(GpuDistanceParams args)

A function that determines whether cuVS should be used based on various conditions (such as unsupported architecture)

void bfKnn(GpuResourcesProvider *resources, const GpuDistanceParams &args)

A wrapper for gpu/impl/Distance.cuh to expose direct brute-force k-nearest neighbor searches on an externally-provided region of memory (e.g., from a pytorch tensor). The data (vectors, queries, outDistances, outIndices) can be resident on the GPU or the CPU, but all calculations are performed on the GPU. If the result buffers are on the CPU, results will be copied back when done.

All GPU computation is performed on the current CUDA device, and ordered with respect to resources->getDefaultStreamCurrentDevice().

For each vector in queries, searches all of vectors to find its k nearest neighbors with respect to the given metric

void bfKnn_tiling(GpuResourcesProvider *resources, const GpuDistanceParams &args, size_t vectorsMemoryLimit, size_t queriesMemoryLimit)
void bruteForceKnn(GpuResourcesProvider *resources, faiss::MetricType metric, const float *vectors, bool vectorsRowMajor, idx_t numVectors, const float *queries, bool queriesRowMajor, idx_t numQueries, int dims, int k, float *outDistances, idx_t *outIndices)

Deprecated legacy implementation.

bool should_use_cuvs(GpuIndexConfig config_)

A centralized function that determines whether cuVS should be used based on various conditions (such as unsupported architecture)

GpuIndex *tryCastGpuIndex(faiss::Index *index)

If the given index is a GPU index, this returns the index instance.

bool isGpuIndex(faiss::Index *index)

Is the given index instance a GPU index?

bool isGpuIndexImplemented(faiss::Index *index)

Does the given CPU index instance have a corresponding GPU implementation?

std::string allocTypeToString(AllocType t)

Convert an AllocType to string.

std::string memorySpaceToString(MemorySpace s)

Convert a MemorySpace to string.

AllocInfo makeDevAlloc(AllocType at, cudaStream_t st)

Create an AllocInfo for the current device with MemorySpace::Device.

AllocInfo makeTempAlloc(AllocType at, cudaStream_t st)

Create an AllocInfo for the current device with MemorySpace::Temporary.

AllocInfo makeSpaceAlloc(AllocType at, MemorySpace sp, cudaStream_t st)

Create an AllocInfo for the current device.

int getMaxKSelection()

A collection of various utility functions for index implementation.

Returns the maximum k-selection value supported based on the CUDA SDK that we were compiled with. .cu files can use DeviceDefs.cuh, but this is for non-CUDA files

void validateKSelect(int k)
void validateNProbe(size_t nprobe)
std::vector<uint8_t> unpackNonInterleaved(std::vector<uint8_t> data, int numVecs, int dims, int bitsPerCode)
std::vector<uint8_t> unpackInterleaved(std::vector<uint8_t> data, int numVecs, int dims, int bitsPerCode)
std::vector<uint8_t> packNonInterleaved(std::vector<uint8_t> data, int numVecs, int dims, int bitsPerCode)
std::vector<uint8_t> packInterleaved(std::vector<uint8_t> data, int numVecs, int dims, int bitsPerCode)
void ivfOffsetToUserIndex(idx_t *indices, idx_t numLists, idx_t queries, int k, const std::vector<std::vector<idx_t>> &listOffsetToUserIndex)

Utility function to translate (list id, offset) to a user index on the CPU. In a cpp in order to use OpenMP.

void newTestSeed()

Generates and displays a new seed for the test.

void setTestSeed(long seed)

Uses an explicit seed for the test.

float relativeError(float a, float b)

Returns the relative error in difference between a and b (|a - b| / (0.5 * (|a| + |b|))

int randVal(int a, int b)

Generates a random integer in the range [a, b].

bool randBool()

Generates a random bool.

template<typename T>
T randSelect(std::initializer_list<T> vals)

Select a random value from the given list of values provided as an initializer_list

std::vector<float> randVecs(size_t num, size_t dim)

Generates a collection of random vectors in the range [0, 1].

std::vector<unsigned char> randBinaryVecs(size_t num, size_t dim)

Generates a collection of random bit vectors.

std::vector<float> roundToHalf(const std::vector<float> &v)
void compareIndices(const std::vector<float> &queryVecs, faiss::Index &refIndex, faiss::Index &testIndex, int numQuery, int dim, int k, const std::string &configMsg, float maxRelativeError = 6e-5f, float pctMaxDiff1 = 0.1f, float pctMaxDiffN = 0.005f)

Compare two indices via query for similarity, with a user-specified set of query vectors

void compareIndices(faiss::Index &refIndex, faiss::Index &testIndex, int numQuery, int dim, int k, const std::string &configMsg, float maxRelativeError = 6e-5f, float pctMaxDiff1 = 0.1f, float pctMaxDiffN = 0.005f)

Compare two indices via query for similarity, generating random query vectors

void compareLists(const float *refDist, const faiss::idx_t *refInd, const float *testDist, const faiss::idx_t *testInd, int dim1, int dim2, const std::string &configMsg, bool printBasicStats, bool printDiffs, bool assertOnErr, float maxRelativeError = 6e-5f, float pctMaxDiff1 = 0.1f, float pctMaxDiffN = 0.005f)

Display specific differences in the two (distance, index) lists.

template<typename A, typename B>
void testIVFEquality(A &cpuIndex, B &gpuIndex)

Compare IVF lists between a CPU and GPU index.

inline cuvsDistanceType metricFaissToCuvs(MetricType metric, bool exactDistance)
void validRowIndices(GpuResources *res, Tensor<float, 2, true> &vecs, bool *validRows)

Identify matrix rows containing non NaN values. validRows[i] is false if row i contains a NaN value and true otherwise.

idx_t inplaceGatherFilteredRows(GpuResources *res, Tensor<float, 2, true> &vecs, Tensor<idx_t, 1, true> &indices)

Filter out matrix rows containing NaN values. The vectors and indices are updated in-place.

int getCurrentDevice()

Returns the current thread-local GPU device.

void setCurrentDevice(int device)

Sets the current thread-local GPU device.

int getNumDevices()

Returns the number of available GPU devices.

void profilerStart()

Starts the CUDA profiler (exposed via SWIG)

void profilerStop()

Stops the CUDA profiler (exposed via SWIG)

void synchronizeAllDevices()

Synchronizes the CPU against all devices (equivalent to cudaDeviceSynchronize for each device)

const cudaDeviceProp &getDeviceProperties(int device)

Returns a cached cudaDeviceProp for the given device.

const cudaDeviceProp &getCurrentDeviceProperties()

Returns the cached cudaDeviceProp for the current device.

int getMaxThreads(int device)

Returns the maximum number of threads available for the given GPU device

int getMaxThreadsCurrentDevice()

Equivalent to getMaxThreads(getCurrentDevice())

dim3 getMaxGrid(int device)

Returns the maximum grid size for the given GPU device.

dim3 getMaxGridCurrentDevice()

Equivalent to getMaxGrid(getCurrentDevice())

size_t getMaxSharedMemPerBlock(int device)

Returns the maximum smem available for the given GPU device.

size_t getMaxSharedMemPerBlockCurrentDevice()

Equivalent to getMaxSharedMemPerBlock(getCurrentDevice())

int getDeviceForAddress(const void *p)

For a given pointer, returns whether or not it is located on a device (deviceId >= 0) or the host (-1).

bool getFullUnifiedMemSupport(int device)

Does the given device support full unified memory sharing host memory?

bool getFullUnifiedMemSupportCurrentDevice()

Equivalent to getFullUnifiedMemSupport(getCurrentDevice())

bool getTensorCoreSupport(int device)

Does the given device support tensor core operations?

bool getTensorCoreSupportCurrentDevice()

Equivalent to getTensorCoreSupport(getCurrentDevice())

int getWarpSize(int device)

Returns the warp size of the given GPU device.

int getWarpSizeCurrentDevice()

Equivalent to getWarpSize(getCurrentDevice())

size_t getFreeMemory(int device)

Returns the amount of currently available memory on the given device.

size_t getFreeMemoryCurrentDevice()

Equivalent to getFreeMemory(getCurrentDevice())

template<typename L1, typename L2>
void streamWaitBase(const L1 &listWaiting, const L2 &listWaitOn)

Call for a collection of streams to wait on.

template<typename L1>
void streamWait(const L1 &a, const std::initializer_list<cudaStream_t> &b)

These versions allow usage of initializer_list as arguments, since otherwise {…} doesn’t have a type

template<typename L2>
void streamWait(const std::initializer_list<cudaStream_t> &a, const L2 &b)
inline void streamWait(const std::initializer_list<cudaStream_t> &a, const std::initializer_list<cudaStream_t> &b)
struct GpuParameterSpace : public faiss::ParameterSpace
#include <GpuAutoTune.h>

parameter space and setters for GPU indexes

Public Functions

virtual void initialize(const faiss::Index *index) override

initialize with reasonable parameters for the index

virtual void set_index_parameter(faiss::Index *index, const std::string &name, double val) const override

set a combination of parameters on an index

size_t n_combinations() const

nb of combinations, = product of values sizes

bool combination_ge(size_t c1, size_t c2) const

returns whether combinations c1 >= c2 in the tuple sense

std::string combination_name(size_t cno) const

get string representation of the combination

void display() const

print a description on stdout

ParameterRange &add_range(const std::string &name)

add a new parameter (or return it if it exists)

void set_index_parameters(Index *index, size_t cno) const

set a combination of parameters on an index

void set_index_parameters(Index *index, const char *param_string) const

set a combination of parameters described by a string

void update_bounds(size_t cno, const OperatingPoint &op, double *upper_bound_perf, double *lower_bound_t) const

find an upper bound on the performance and a lower bound on t for configuration cno given another operating point op

void explore(Index *index, size_t nq, const float *xq, const AutoTuneCriterion &crit, OperatingPoints *ops) const

explore operating points

Parameters:
  • index – index to run on

  • xq – query vectors (size nq * index.d)

  • crit – selection criterion

  • ops – resulting operating points

Public Members

std::vector<ParameterRange> parameter_ranges

all tunable parameters

int verbose

verbosity during exploration

int n_experiments

nb of experiments during optimization (0 = try all combinations)

size_t batchsize

maximum number of queries to submit at a time.

bool thread_over_batches

use multithreading over batches (useful to benchmark independent single-searches)

double min_test_duration

run tests several times until they reach at least this duration (to avoid jittering in MT mode)

struct ToCPUCloner : public faiss::Cloner
#include <GpuCloner.h>

Cloner specialized for GPU -> CPU.

Public Functions

void merge_index(Index *dst, Index *src, bool successive_ids)
virtual Index *clone_Index(const Index *index) override
virtual VectorTransform *clone_VectorTransform(const VectorTransform*)
virtual IndexIVF *clone_IndexIVF(const IndexIVF*)
struct ToGpuCloner : public faiss::Cloner, public faiss::gpu::GpuClonerOptions
#include <GpuCloner.h>

Cloner specialized for CPU -> 1 GPU.

Public Functions

ToGpuCloner(GpuResourcesProvider *prov, int device, const GpuClonerOptions &options)
virtual Index *clone_Index(const Index *index) override
virtual VectorTransform *clone_VectorTransform(const VectorTransform*)
virtual IndexIVF *clone_IndexIVF(const IndexIVF*)

Public Members

GpuResourcesProvider *provider
int device
IndicesOptions indicesOptions = INDICES_64_BIT

how should indices be stored on index types that support indices (anything but GpuIndexFlat*)?

bool useFloat16CoarseQuantizer = false

is the coarse quantizer in float16?

bool useFloat16 = false

for GpuIndexIVFFlat, is storage in float16? for GpuIndexIVFPQ, are intermediate calculations in float16?

bool usePrecomputed = false

use precomputed tables?

long reserveVecs = 0

reserve vectors in the invfiles?

bool storeTransposed = false

For GpuIndexFlat, store data in transposed layout?

bool verbose = false

Set verbose options on the index.

bool use_cuvs = false

use the cuVS implementation

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

struct ToGpuClonerMultiple : public faiss::Cloner, public faiss::gpu::GpuMultipleClonerOptions
#include <GpuCloner.h>

Cloner specialized for CPU -> multiple GPUs.

Public Functions

ToGpuClonerMultiple(std::vector<GpuResourcesProvider*> &provider, std::vector<int> &devices, const GpuMultipleClonerOptions &options)
ToGpuClonerMultiple(const std::vector<ToGpuCloner> &sub_cloners, const GpuMultipleClonerOptions &options)
void copy_ivf_shard(const IndexIVF *index_ivf, IndexIVF *idx2, idx_t n, idx_t i)
Index *clone_Index_to_shards(const Index *index)
virtual Index *clone_Index(const Index *index) override

main function

virtual VectorTransform *clone_VectorTransform(const VectorTransform*)
virtual IndexIVF *clone_IndexIVF(const IndexIVF*)

Public Members

std::vector<ToGpuCloner> sub_cloners
bool shard = false

Whether to shard the index across GPUs, versus replication across GPUs

int shard_type = 1

IndexIVF::copy_subset_to subset type.

bool common_ivf_quantizer = false

set to true if an IndexIVF is to be dispatched to multiple GPUs with a single common IVF quantizer, ie. only the inverted lists are sharded on the sub-indexes (uses an IndexShardsIVF)

IndicesOptions indicesOptions = INDICES_64_BIT

how should indices be stored on index types that support indices (anything but GpuIndexFlat*)?

bool useFloat16CoarseQuantizer = false

is the coarse quantizer in float16?

bool useFloat16 = false

for GpuIndexIVFFlat, is storage in float16? for GpuIndexIVFPQ, are intermediate calculations in float16?

bool usePrecomputed = false

use precomputed tables?

long reserveVecs = 0

reserve vectors in the invfiles?

bool storeTransposed = false

For GpuIndexFlat, store data in transposed layout?

bool verbose = false

Set verbose options on the index.

bool use_cuvs = false

use the cuVS implementation

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

struct GpuProgressiveDimIndexFactory : public faiss::ProgressiveDimIndexFactory
#include <GpuCloner.h>

index factory for the ProgressiveDimClustering object

Public Functions

explicit GpuProgressiveDimIndexFactory(int ngpu)
virtual Index *operator()(int dim) override

ownership transferred to caller

virtual ~GpuProgressiveDimIndexFactory() override

Public Members

GpuMultipleClonerOptions options
std::vector<GpuResourcesProvider*> vres
std::vector<int> devices
int ncall
struct GpuClonerOptions
#include <GpuClonerOptions.h>

set some options on how to copy to GPU

Subclassed by faiss::gpu::GpuMultipleClonerOptions, faiss::gpu::ToGpuCloner

Public Members

IndicesOptions indicesOptions = INDICES_64_BIT

how should indices be stored on index types that support indices (anything but GpuIndexFlat*)?

bool useFloat16CoarseQuantizer = false

is the coarse quantizer in float16?

bool useFloat16 = false

for GpuIndexIVFFlat, is storage in float16? for GpuIndexIVFPQ, are intermediate calculations in float16?

bool usePrecomputed = false

use precomputed tables?

long reserveVecs = 0

reserve vectors in the invfiles?

bool storeTransposed = false

For GpuIndexFlat, store data in transposed layout?

bool verbose = false

Set verbose options on the index.

bool use_cuvs = false

use the cuVS implementation

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

struct GpuMultipleClonerOptions : public faiss::gpu::GpuClonerOptions

Subclassed by faiss::gpu::ToGpuClonerMultiple

Public Members

bool shard = false

Whether to shard the index across GPUs, versus replication across GPUs

int shard_type = 1

IndexIVF::copy_subset_to subset type.

bool common_ivf_quantizer = false

set to true if an IndexIVF is to be dispatched to multiple GPUs with a single common IVF quantizer, ie. only the inverted lists are sharded on the sub-indexes (uses an IndexShardsIVF)

IndicesOptions indicesOptions = INDICES_64_BIT

how should indices be stored on index types that support indices (anything but GpuIndexFlat*)?

bool useFloat16CoarseQuantizer = false

is the coarse quantizer in float16?

bool useFloat16 = false

for GpuIndexIVFFlat, is storage in float16? for GpuIndexIVFPQ, are intermediate calculations in float16?

bool usePrecomputed = false

use precomputed tables?

long reserveVecs = 0

reserve vectors in the invfiles?

bool storeTransposed = false

For GpuIndexFlat, store data in transposed layout?

bool verbose = false

Set verbose options on the index.

bool use_cuvs = false

use the cuVS implementation

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

struct GpuDistanceParams
#include <GpuDistance.h>

Arguments to brute-force GPU k-nearest neighbor searching.

Public Members

faiss::MetricType metric = METRIC_L2

Search parameter: distance metric.

float metricArg = 0

Search parameter: distance metric argument (if applicable) For metric == METRIC_Lp, this is the p-value

int k = 0

Search parameter: return k nearest neighbors If the value provided is -1, then we report all pairwise distances without top-k filtering

int dims = 0

Vector dimensionality.

const void *vectors = nullptr

If vectorsRowMajor is true, this is numVectors x dims, with dims innermost; otherwise, dims x numVectors, with numVectors innermost

DistanceDataType vectorType = DistanceDataType::F32
bool vectorsRowMajor = true
idx_t numVectors = 0
const float *vectorNorms = nullptr

Precomputed L2 norms for each vector in vectors, which can be optionally provided in advance to speed computation for METRIC_L2

const void *queries = nullptr

If queriesRowMajor is true, this is numQueries x dims, with dims innermost; otherwise, dims x numQueries, with numQueries innermost

DistanceDataType queryType = DistanceDataType::F32
bool queriesRowMajor = true
idx_t numQueries = 0
float *outDistances = nullptr

A region of memory size numQueries x k, with k innermost (row major) if k > 0, or if k == -1, a region of memory of size numQueries x numVectors

bool ignoreOutDistances = false

Do we only care about the indices reported, rather than the output distances? Not used if k == -1 (all pairwise distances)

IndicesDataType outIndicesType = IndicesDataType::I64

A region of memory size numQueries x k, with k innermost (row major). Not used if k == -1 (all pairwise distances)

void *outIndices = nullptr
int device = -1

On which GPU device should the search run? -1 indicates that the current CUDA thread-local device (via cudaGetDevice/cudaSetDevice) is used Otherwise, an integer 0 <= device < numDevices indicates the device for execution

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIcmEncoder : public faiss::lsq::IcmEncoder
#include <GpuIcmEncoder.h>

Perform LSQ encoding on GPU.

Split input vectors to different devices and call IcmEncoderImpl::encode to encode them

Public Functions

GpuIcmEncoder(const LocalSearchQuantizer *lsq, const std::vector<GpuResourcesProvider*> &provs, const std::vector<int> &devices)
~GpuIcmEncoder()
GpuIcmEncoder(const GpuIcmEncoder&) = delete
GpuIcmEncoder &operator=(const GpuIcmEncoder&) = delete
virtual void set_binary_term() override
virtual void encode(int32_t *codes, const float *x, std::mt19937 &gen, size_t n, size_t ils_iters) const override

Encode vectors given codebooks

Parameters:
  • codes – output codes, size n * M

  • x – vectors to encode, size n * d

  • gen – random generator

  • n – number of vectors

  • ils_iters – number of iterations of iterative local search

Public Members

std::vector<float> binaries
bool verbose
const LocalSearchQuantizer *lsq

Private Members

std::unique_ptr<IcmEncoderShards> shards
struct GpuIcmEncoderFactory : public faiss::lsq::IcmEncoderFactory

Public Functions

explicit GpuIcmEncoderFactory(int ngpus = 1)
virtual lsq::IcmEncoder *get(const LocalSearchQuantizer *lsq) override

Public Members

std::vector<GpuResourcesProvider*> provs
std::vector<int> devices
struct GpuIndexConfig

Subclassed by faiss::gpu::GpuIndexBinaryFlatConfig, faiss::gpu::GpuIndexCagraConfig, faiss::gpu::GpuIndexFlatConfig, faiss::gpu::GpuIndexIVFConfig

Public Members

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndex : public faiss::Index

Subclassed by faiss::gpu::GpuIndexCagra, faiss::gpu::GpuIndexFlat, faiss::gpu::GpuIndexIVF

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndex(std::shared_ptr<GpuResources> resources, int dims, faiss::MetricType metric, float metricArg, GpuIndexConfig config)
int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reset() = 0

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

virtual bool addImplRequiresIDs_() const = 0

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) = 0

Overridden to actually perform the add All data is guaranteed to be resident on our device

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const = 0

Overridden to actually perform the search All data is guaranteed to be resident on our device

Protected Attributes

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

Private Functions

void addPaged_(idx_t n, const float *x, const idx_t *ids)

Handles paged adds if the add set is too large, passes to addImpl_ to actually perform the add for the current page

void addPage_(idx_t n, const float *x, const idx_t *ids)

Calls addImpl_ for a single page of GPU-resident data.

void searchNonPaged_(idx_t n, const float *x, int k, float *outDistancesData, idx_t *outIndicesData, const SearchParameters *params) const

Calls searchImpl_ for a single page of GPU-resident data.

void searchFromCpuPaged_(idx_t n, const float *x, int k, float *outDistancesData, idx_t *outIndicesData, const SearchParameters *params) const

Calls searchImpl_ for a single page of GPU-resident data, handling paging of the data and copies from the CPU

struct GpuIndexBinaryFlatConfig : public faiss::gpu::GpuIndexConfig

Public Members

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexBinaryFlat : public faiss::IndexBinary
#include <GpuIndexBinaryFlat.h>

A GPU version of IndexBinaryFlat for brute-force comparison of bit vectors via Hamming distance

Public Types

using component_t = uint8_t
using distance_t = int32_t

Public Functions

GpuIndexBinaryFlat(GpuResourcesProvider *resources, const faiss::IndexBinaryFlat *index, GpuIndexBinaryFlatConfig config = GpuIndexBinaryFlatConfig())

Construct from a pre-existing faiss::IndexBinaryFlat instance, copying data over to the given GPU

GpuIndexBinaryFlat(GpuResourcesProvider *resources, int dims, GpuIndexBinaryFlatConfig config = GpuIndexBinaryFlatConfig())

Construct an empty instance that can be added to.

~GpuIndexBinaryFlat() override
int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void copyFrom(const faiss::IndexBinaryFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexBinaryFlat *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

virtual void add(faiss::idx_t n, const uint8_t *x) override

Add n vectors of dimension d to the index.

Vectors are implicitly assigned labels ntotal .. ntotal + n - 1

Parameters:

x – input matrix, size n * d / 8

virtual void reset() override

Removes all elements from the database.

virtual void search(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, faiss::idx_t *labels, const faiss::SearchParameters *params = nullptr) const override

Query n vectors of dimension d to the index.

return at most k vectors. If there are not enough results for a query, the result array is padded with -1s.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

  • distances – output pairwise distances, size n*k

virtual void reconstruct(faiss::idx_t key, uint8_t *recons) const override

Reconstruct a stored vector.

This function may not be defined for some indexes.

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d / 8)

virtual void train(idx_t n, const uint8_t *x)

Perform training on a representative set of vectors.

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d / 8

virtual void add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids)

Same as add, but stores xids instead of sequential ids.

The default implementation fails with an assertion, as it is not supported by all indexes.

Parameters:

xids – if non-null, ids to store for the vectors (size n)

virtual void range_search(idx_t n, const uint8_t *x, int radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

Query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory). The distances are converted to float to reuse the RangeSearchResult structure, but they are integer. By convention, only distances < radius (strict comparison) are returned, ie. radius = 0 does not return any result and 1 returns only exact same vectors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • radius – search radius

  • result – result table

void assign(idx_t n, const uint8_t *x, idx_t *labels, idx_t k = 1) const

Return the indexes of the k vectors closest to the query x.

This function is identical to search but only returns labels of neighbors.

Parameters:
  • x – input vectors to search, size n * d / 8

  • labels – output labels of the NNs, size n*k

virtual size_t remove_ids(const IDSelector &sel)

Removes IDs from the index. Not supported by all indexes.

virtual void reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const

Reconstruct vectors i0 to i0 + ni - 1.

This function may not be defined for some indexes.

Parameters:

recons – reconstucted vectors (size ni * d / 8)

virtual void search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k, int32_t *distances, idx_t *labels, uint8_t *recons, const SearchParameters *params = nullptr) const

Similar to search, but also reconstructs the stored vectors (or an approximation in the case of lossy coding) for the search results.

If there are not enough results for a query, the resulting array is padded with -1s.

Parameters:

recons – reconstructed vectors size (n, k, d)

void display() const

Display the actual class name and some more info.

virtual void merge_from(IndexBinary &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const IndexBinary &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Same as add_with_ids for IndexBinary.

Public Members

int d = 0

vector dimension

int code_size = 0

number of bytes per vector ( = d / 8 )

idx_t ntotal = 0

total nb of indexed vectors

bool verbose = false

verbosity level

bool is_trained = true

set if the Index does not require training, or if training is done already

MetricType metric_type = METRIC_L2

type of metric this index uses for search

Protected Functions

void searchFromCpuPaged_(idx_t n, const uint8_t *x, int k, int32_t *outDistancesData, idx_t *outIndicesData) const

Called from search when the input data is on the CPU; potentially allows for pinned memory usage

void searchNonPaged_(idx_t n, const uint8_t *x, int k, int32_t *outDistancesData, idx_t *outIndicesData) const

Protected Attributes

std::shared_ptr<GpuResources> resources_

Manages streans, cuBLAS handles and scratch memory for devices.

const GpuIndexBinaryFlatConfig binaryFlatConfig_

Configuration options.

std::unique_ptr<BinaryFlatIndex> data_

Holds our GPU data containing the list of vectors.

struct IVFPQBuildCagraConfig

Public Members

uint32_t n_lists = 1024

The number of inverted lists (clusters)

Hint: the number of vectors per cluster (n_rows/n_lists) should be approximately 1,000 to 10,000.

uint32_t kmeans_n_iters = 20

The number of iterations searching for kmeans centers (index building).

double kmeans_trainset_fraction = 0.5

The fraction of data to use during iterative kmeans building.

uint32_t pq_bits = 8

The bit length of the vector element after compression by PQ.

Possible values: [4, 5, 6, 7, 8].

Hint: the smaller the ‘pq_bits’, the smaller the index size and the better the search performance, but the lower the recall.

uint32_t pq_dim = 0

The dimensionality of the vector after compression by PQ. When zero, an optimal value is selected using a heuristic.

NB: pq_dim /// pq_bits must be a multiple of 8.

Hint: a smaller ‘pq_dim’ results in a smaller index size and better search performance, but lower recall. If ‘pq_bits’ is 8, ‘pq_dim’ can be set to any number, but multiple of 8 are desirable for good performance. If ‘pq_bits’ is not 8, ‘pq_dim’ should be a multiple of 8. For good performance, it is desirable that ‘pq_dim’ is a multiple of 32. Ideally, ‘pq_dim’ should be also a divisor of the dataset dim.

codebook_gen codebook_kind = codebook_gen::PER_SUBSPACE

How PQ codebooks are created.

bool force_random_rotation = false

Apply a random rotation matrix on the input data and queries even if dim % pq_dim == 0.

Note: if dim is not multiple of pq_dim, a random rotation is always applied to the input data and queries to transform the working space from dim to rot_dim, which may be slightly larger than the original space and and is a multiple of pq_dim (rot_dim % pq_dim == 0). However, this transform is not necessary when dim is multiple of pq_dim (dim == rot_dim, hence no need in adding “extra” data columns / features).

By default, if dim == rot_dim, the rotation transform is initialized with the identity matrix. When force_random_rotation == true, a random orthogonal transform matrix is generated regardless of the values of dim and pq_dim.

bool conservative_memory_allocation = false

By default, the algorithm allocates more space than necessary for individual clusters (list_data). This allows to amortize the cost of memory allocation and reduce the number of data copies during repeated calls to extend (extending the database).

The alternative is the conservative allocation behavior; when enabled, the algorithm always allocates the minimum amount of memory required to store the given number of records. Set this flag to true if you prefer to use as little GPU memory for the database as possible.

struct IVFPQSearchCagraConfig

Public Members

uint32_t n_probes = 20

The number of clusters to search.

cudaDataType_t lut_dtype = CUDA_R_32F

Data type of look up table to be created dynamically at search time.

Possible values: [CUDA_R_32F, CUDA_R_16F, CUDA_R_8U]

The use of low-precision types reduces the amount of shared memory required at search time, so fast shared memory kernels can be used even for datasets with large dimansionality. Note that the recall is slightly degraded when low-precision type is selected.

cudaDataType_t internal_distance_dtype = CUDA_R_32F

Storage data type for distance/similarity computed at search time.

Possible values: [CUDA_R_16F, CUDA_R_32F]

If the performance limiter at search time is device memory access, selecting FP16 will improve performance slightly.

double preferred_shmem_carveout = 1.0

Preferred fraction of SM’s unified memory / L1 cache to be used as shared memory.

Possible values: [0.0 - 1.0] as a fraction of the sharedMemPerMultiprocessor.

One wants to increase the carveout to make sure a good GPU occupancy for the main search kernel, but not to keep it too high to leave some memory to be used as L1 cache. Note, this value is interpreted only as a hint. Moreover, a GPU usually allows only a fixed set of cache configurations, so the provided value is rounded up to the nearest configuration. Refer to the NVIDIA tuning guide for the target GPU architecture.

Note, this is a low-level tuning parameter that can have drastic negative effects on the search performance if tweaked incorrectly.

struct GpuIndexCagraConfig : public faiss::gpu::GpuIndexConfig

Public Members

size_t intermediate_graph_degree = 128

Degree of input graph for pruning.

size_t graph_degree = 64

Degree of output graph.

graph_build_algo build_algo = graph_build_algo::IVF_PQ

ANN algorithm to build knn graph.

size_t nn_descent_niter = 20

Number of Iterations to run if building with NN_DESCENT.

IVFPQBuildCagraConfig *ivf_pq_params = nullptr
IVFPQSearchCagraConfig *ivf_pq_search_params = nullptr
float refine_rate = 2.0f
bool store_dataset = true
int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

struct SearchParametersCagra : public faiss::SearchParameters

Public Members

size_t max_queries = 0

Maximum number of queries to search at the same time (batch size). Auto select when 0.

size_t itopk_size = 64

Number of intermediate search results retained during the search.

This is the main knob to adjust trade off between accuracy and search speed. Higher values improve the search accuracy.

size_t max_iterations = 0

Upper limit of search iterations. Auto select when 0.

search_algo algo = search_algo::AUTO

Which search implementation to use.

size_t team_size = 0

Number of threads used to calculate a single distance. 4, 8, 16, or 32.

size_t search_width = 1

Number of graph nodes to select as the starting point for the search in each iteration. aka search width?

size_t min_iterations = 0

Lower limit of search iterations.

size_t thread_block_size = 0

Thread block size. 0, 64, 128, 256, 512, 1024. Auto selection when 0.

hash_mode hashmap_mode = hash_mode::AUTO

Hashmap type. Auto selection when AUTO.

size_t hashmap_min_bitlen = 0

Lower limit of hashmap bit length. More than 8.

float hashmap_max_fill_rate = 0.5

Upper limit of hashmap fill rate. More than 0.1, less than 0.9.

uint32_t num_random_samplings = 1

Number of iterations of initial random seed node selection. 1 or more.

uint64_t seed = 0x128394

Bit mask used for initial random seed node selection.

IDSelector *sel = nullptr

if non-null, only these IDs will be considered during search.

struct GpuIndexCagra : public faiss::gpu::GpuIndex

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexCagra(GpuResourcesProvider *provider, int dims, faiss::MetricType metric = faiss::METRIC_L2, GpuIndexCagraConfig config = GpuIndexCagraConfig())
virtual void train(idx_t n, const float *x) override

Trains CAGRA based on the given vector data.

void copyFrom(const faiss::IndexHNSWCagra *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexHNSWCagra *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

virtual void reset() override

removes all elements from the database.

std::vector<idx_t> get_knngraph() const
int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Overridden to actually perform the add All data is guaranteed to be resident on our device

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *search_params) const override

Called from GpuIndex for search.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

Protected Attributes

const GpuIndexCagraConfig cagraConfig_

Our configuration options.

std::shared_ptr<CuvsCagra> index_

Instance that we own; contains the inverted lists.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

struct GpuIndexFlatConfig : public faiss::gpu::GpuIndexConfig

Public Functions

bool ALIGNED (8) useFloat16

Whether or not data is stored as float16.

Public Members

bool storeTransposed = false

Deprecated: no longer used Previously used to indicate whether internal storage of vectors is transposed

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexFlat : public faiss::gpu::GpuIndex
#include <GpuIndexFlat.h>

Wrapper around the GPU implementation that looks like faiss::IndexFlat; copies over centroid data from a given faiss::IndexFlat

Subclassed by faiss::gpu::GpuIndexFlatIP, faiss::gpu::GpuIndexFlatL2

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexFlat(GpuResourcesProvider *provider, const faiss::IndexFlat *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct from a pre-existing faiss::IndexFlat instance, copying data over to the given GPU

GpuIndexFlat(std::shared_ptr<GpuResources> resources, const faiss::IndexFlat *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())
GpuIndexFlat(GpuResourcesProvider *provider, int dims, faiss::MetricType metric, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct an empty instance that can be added to.

GpuIndexFlat(std::shared_ptr<GpuResources> resources, int dims, faiss::MetricType metric, GpuIndexFlatConfig config = GpuIndexFlatConfig())
~GpuIndexFlat() override
void copyFrom(const faiss::IndexFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexFlat *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

size_t getNumVecs() const

Returns the number of vectors we contain.

virtual void reset() override

Clears all vectors from this index.

virtual void train(idx_t n, const float *x) override

This index is not trained, so this does nothing.

virtual void add(idx_t, const float *x) override

Overrides to avoid excessive copies.

virtual void reconstruct(idx_t key, float *out) const override

Reconstruction methods; prefer the batch reconstruct as it will be more efficient

virtual void reconstruct_n(idx_t i0, idx_t num, float *out) const override

Batch reconstruction method.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *out) const override

Batch reconstruction method.

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Compute residual.

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Compute residual (batch mode)

inline FlatIndex *getGpuData()

For internal access.

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

void resetIndex_(int dims)
virtual bool addImplRequiresIDs_() const override

Flat index does not require IDs as there is no storage available for them

virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

Protected Attributes

const GpuIndexFlatConfig flatConfig_

Our configuration options.

std::unique_ptr<FlatIndex> data_

Holds our GPU data containing the list of vectors.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

class GpuIndexFlatL2 : public faiss::gpu::GpuIndexFlat
#include <GpuIndexFlat.h>

Wrapper around the GPU implementation that looks like faiss::IndexFlatL2; copies over centroid data from a given faiss::IndexFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexFlatL2(GpuResourcesProvider *provider, faiss::IndexFlatL2 *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct from a pre-existing faiss::IndexFlatL2 instance, copying data over to the given GPU

GpuIndexFlatL2(std::shared_ptr<GpuResources> resources, faiss::IndexFlatL2 *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())
GpuIndexFlatL2(GpuResourcesProvider *provider, int dims, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct an empty instance that can be added to.

GpuIndexFlatL2(std::shared_ptr<GpuResources> resources, int dims, GpuIndexFlatConfig config = GpuIndexFlatConfig())
void copyFrom(faiss::IndexFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexFlat *index)

Copy ourselves to the given CPU index; will overwrite all data in the index instance

void copyFrom(const faiss::IndexFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexFlat *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

size_t getNumVecs() const

Returns the number of vectors we contain.

virtual void reset() override

Clears all vectors from this index.

virtual void train(idx_t n, const float *x) override

This index is not trained, so this does nothing.

virtual void add(idx_t, const float *x) override

Overrides to avoid excessive copies.

virtual void reconstruct(idx_t key, float *out) const override

Reconstruction methods; prefer the batch reconstruct as it will be more efficient

virtual void reconstruct_n(idx_t i0, idx_t num, float *out) const override

Batch reconstruction method.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *out) const override

Batch reconstruction method.

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Compute residual.

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Compute residual (batch mode)

inline FlatIndex *getGpuData()

For internal access.

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

void resetIndex_(int dims)
virtual bool addImplRequiresIDs_() const override

Flat index does not require IDs as there is no storage available for them

virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

Protected Attributes

const GpuIndexFlatConfig flatConfig_

Our configuration options.

std::unique_ptr<FlatIndex> data_

Holds our GPU data containing the list of vectors.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

class GpuIndexFlatIP : public faiss::gpu::GpuIndexFlat
#include <GpuIndexFlat.h>

Wrapper around the GPU implementation that looks like faiss::IndexFlatIP; copies over centroid data from a given faiss::IndexFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexFlatIP(GpuResourcesProvider *provider, faiss::IndexFlatIP *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct from a pre-existing faiss::IndexFlatIP instance, copying data over to the given GPU

GpuIndexFlatIP(std::shared_ptr<GpuResources> resources, faiss::IndexFlatIP *index, GpuIndexFlatConfig config = GpuIndexFlatConfig())
GpuIndexFlatIP(GpuResourcesProvider *provider, int dims, GpuIndexFlatConfig config = GpuIndexFlatConfig())

Construct an empty instance that can be added to.

GpuIndexFlatIP(std::shared_ptr<GpuResources> resources, int dims, GpuIndexFlatConfig config = GpuIndexFlatConfig())
void copyFrom(faiss::IndexFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexFlat *index)

Copy ourselves to the given CPU index; will overwrite all data in the index instance

void copyFrom(const faiss::IndexFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexFlat *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

size_t getNumVecs() const

Returns the number of vectors we contain.

virtual void reset() override

Clears all vectors from this index.

virtual void train(idx_t n, const float *x) override

This index is not trained, so this does nothing.

virtual void add(idx_t, const float *x) override

Overrides to avoid excessive copies.

virtual void reconstruct(idx_t key, float *out) const override

Reconstruction methods; prefer the batch reconstruct as it will be more efficient

virtual void reconstruct_n(idx_t i0, idx_t num, float *out) const override

Batch reconstruction method.

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *out) const override

Batch reconstruction method.

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Compute residual.

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Compute residual (batch mode)

inline FlatIndex *getGpuData()

For internal access.

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

Protected Functions

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

void resetIndex_(int dims)
virtual bool addImplRequiresIDs_() const override

Flat index does not require IDs as there is no storage available for them

virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

Protected Attributes

const GpuIndexFlatConfig flatConfig_

Our configuration options.

std::unique_ptr<FlatIndex> data_

Holds our GPU data containing the list of vectors.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

struct GpuIndexIVFConfig : public faiss::gpu::GpuIndexConfig

Subclassed by faiss::gpu::GpuIndexIVFFlatConfig, faiss::gpu::GpuIndexIVFPQConfig, faiss::gpu::GpuIndexIVFScalarQuantizerConfig

Public Members

IndicesOptions indicesOptions = INDICES_64_BIT

Index storage options for the GPU.

GpuIndexFlatConfig flatConfig

Configuration for the coarse quantizer object.

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexIVF : public faiss::gpu::GpuIndex, public faiss::IndexIVFInterface
#include <GpuIndexIVF.h>

Base class of all GPU IVF index types. This (for now) deliberately does not inherit from IndexIVF, as many of the public data members and functionality in IndexIVF is not supported in the same manner on the GPU.

Subclassed by faiss::gpu::GpuIndexIVFFlat, faiss::gpu::GpuIndexIVFPQ, faiss::gpu::GpuIndexIVFScalarQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexIVF(GpuResourcesProvider *provider, int dims, faiss::MetricType metric, float metricArg, idx_t nlist, GpuIndexIVFConfig config = GpuIndexIVFConfig())

Version that auto-constructs a flat coarse quantizer based on the desired metric

GpuIndexIVF(GpuResourcesProvider *provider, Index *coarseQuantizer, int dims, faiss::MetricType metric, float metricArg, idx_t nlist, GpuIndexIVFConfig config = GpuIndexIVFConfig())

Version that takes a coarse quantizer instance. The GpuIndexIVF does not own the coarseQuantizer instance by default (functions like IndexIVF).

~GpuIndexIVF() override
void copyFrom(const faiss::IndexIVF *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::IndexIVF *index) const

Copy what we have to the CPU equivalent.

virtual void updateQuantizer() = 0

Should be called if the user ever changes the state of the IVF coarse quantizer manually (e.g., substitutes a new instance or changes vectors in the coarse quantizer outside the scope of training)

virtual idx_t getNumLists() const

Returns the number of inverted lists we’re managing.

virtual idx_t getListLength(idx_t listId) const

Returns the number of vectors present in a particular inverted list.

virtual std::vector<uint8_t> getListVectorData(idx_t listId, bool gpuFormat = false) const

Return the encoded vector data contained in a particular inverted list, for debugging purposes. If gpuFormat is true, the data is returned as it is encoded in the GPU-side representation. Otherwise, it is converted to the CPU format. compliant format, while the native GPU format may differ.

virtual std::vector<idx_t> getListIndices(idx_t listId) const

Return the vector indices contained in a particular inverted list, for debugging purposes.

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const SearchParametersIVF *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void train(idx_t n, const float *x)

Perform training on a representative set of vectors

Parameters:
  • n – nb of training vectors

  • x – training vecors, size n * d

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual void reset() = 0

removes all elements from the database.

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

Protected Functions

int getCurrentNProbe_(const SearchParameters *params) const

From either the current set nprobe or the SearchParameters if available, return the nprobe that we should use for the current search

void verifyIVFSettings_() const
virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void trainQuantizer_(idx_t n, const float *x)
virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add/add_with_ids.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

Protected Attributes

const GpuIndexIVFConfig ivfConfig_

Our configuration options.

std::shared_ptr<IVFBase> baseIndex_

For a trained/initialized index, this is a reference to the base class.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

Private Functions

void init_()

Shared initialization functions.

struct GpuIndexIVFFlatConfig : public faiss::gpu::GpuIndexIVFConfig

Public Members

bool interleavedLayout = true

Use the alternative memory layout for the IVF lists (currently the default)

IndicesOptions indicesOptions = INDICES_64_BIT

Index storage options for the GPU.

GpuIndexFlatConfig flatConfig

Configuration for the coarse quantizer object.

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexIVFFlat : public faiss::gpu::GpuIndexIVF
#include <GpuIndexIVFFlat.h>

Wrapper around the GPU implementation that looks like faiss::IndexIVFFlat

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexIVFFlat(GpuResourcesProvider *provider, const faiss::IndexIVFFlat *index, GpuIndexIVFFlatConfig config = GpuIndexIVFFlatConfig())

Construct from a pre-existing faiss::IndexIVFFlat instance, copying data over to the given GPU, if the input index is trained.

GpuIndexIVFFlat(GpuResourcesProvider *provider, int dims, idx_t nlist, faiss::MetricType metric = faiss::METRIC_L2, GpuIndexIVFFlatConfig config = GpuIndexIVFFlatConfig())

Constructs a new instance with an empty flat quantizer; the user provides the number of IVF lists desired.

GpuIndexIVFFlat(GpuResourcesProvider *provider, Index *coarseQuantizer, int dims, idx_t nlist, faiss::MetricType metric = faiss::METRIC_L2, GpuIndexIVFFlatConfig config = GpuIndexIVFFlatConfig())

Constructs a new instance with a provided CPU or GPU coarse quantizer; the user provides the number of IVF lists desired.

~GpuIndexIVFFlat() override
void reserveMemory(size_t numVecs)

Reserve GPU memory in our inverted lists for this number of vectors.

void copyFrom(const faiss::IndexIVFFlat *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexIVFFlat *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

size_t reclaimMemory()

After adding vectors, one can call this to reclaim device memory to exactly the amount needed. Returns space reclaimed in bytes

virtual void reset() override

Clears out all inverted lists, but retains the coarse centroid information

virtual void updateQuantizer() override

Should be called if the user ever changes the state of the IVF coarse quantizer manually (e.g., substitutes a new instance or changes vectors in the coarse quantizer outside the scope of training)

virtual void train(idx_t n, const float *x) override

Trains the coarse quantizer based on the given vector data.

virtual void reconstruct_n(idx_t i0, idx_t n, float *out) const override

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

void copyFrom(const faiss::IndexIVF *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::IndexIVF *index) const

Copy what we have to the CPU equivalent.

virtual idx_t getNumLists() const

Returns the number of inverted lists we’re managing.

virtual idx_t getListLength(idx_t listId) const

Returns the number of vectors present in a particular inverted list.

virtual std::vector<uint8_t> getListVectorData(idx_t listId, bool gpuFormat = false) const

Return the encoded vector data contained in a particular inverted list, for debugging purposes. If gpuFormat is true, the data is returned as it is encoded in the GPU-side representation. Otherwise, it is converted to the CPU format. compliant format, while the native GPU format may differ.

virtual std::vector<idx_t> getListIndices(idx_t listId) const

Return the vector indices contained in a particular inverted list, for debugging purposes.

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const SearchParametersIVF *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

Protected Functions

void setIndex_(GpuResources *resources, int dim, int nlist, faiss::MetricType metric, float metricArg, bool useResidual, faiss::ScalarQuantizer *scalarQ, bool interleavedLayout, IndicesOptions indicesOptions, MemorySpace space)

Initialize appropriate index.

Parameters:

scalarQ – Optional ScalarQuantizer

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

int getCurrentNProbe_(const SearchParameters *params) const

From either the current set nprobe or the SearchParameters if available, return the nprobe that we should use for the current search

void verifyIVFSettings_() const
virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void trainQuantizer_(idx_t n, const float *x)
virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add/add_with_ids.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

Protected Attributes

const GpuIndexIVFFlatConfig ivfFlatConfig_

Our configuration options.

size_t reserveMemoryVecs_

Desired inverted list memory reservation.

std::shared_ptr<IVFFlat> index_

Instance that we own; contains the inverted lists.

const GpuIndexIVFConfig ivfConfig_

Our configuration options.

std::shared_ptr<IVFBase> baseIndex_

For a trained/initialized index, this is a reference to the base class.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

struct GpuIndexIVFPQConfig : public faiss::gpu::GpuIndexIVFConfig

Public Members

bool useFloat16LookupTables = false

Whether or not float16 residual distance tables are used in the list scanning kernels. When subQuantizers * 2^bitsPerCode > 16384, this is required.

bool usePrecomputedTables = false

Whether or not we enable the precomputed table option for search, which can substantially increase the memory requirement.

bool interleavedLayout = false

Use the alternative memory layout for the IVF lists WARNING: this is a feature under development, and is only supported with cuVS enabled for the index. Do not use if cuVS is not enabled.

bool useMMCodeDistance = false

Use GEMM-backed computation of PQ code distances for the no precomputed table version of IVFPQ. This is for debugging purposes, it should not substantially affect the results one way for another.

Note that MM code distance is enabled automatically if one uses a number of dimensions per sub-quantizer that is not natively specialized (an odd number like 7 or so).

IndicesOptions indicesOptions = INDICES_64_BIT

Index storage options for the GPU.

GpuIndexFlatConfig flatConfig

Configuration for the coarse quantizer object.

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexIVFPQ : public faiss::gpu::GpuIndexIVF
#include <GpuIndexIVFPQ.h>

IVFPQ index for the GPU.

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexIVFPQ(GpuResourcesProvider *provider, const faiss::IndexIVFPQ *index, GpuIndexIVFPQConfig config = GpuIndexIVFPQConfig())

Construct from a pre-existing faiss::IndexIVFPQ instance, copying data over to the given GPU, if the input index is trained.

GpuIndexIVFPQ(GpuResourcesProvider *provider, int dims, idx_t nlist, idx_t subQuantizers, idx_t bitsPerCode, faiss::MetricType metric = faiss::METRIC_L2, GpuIndexIVFPQConfig config = GpuIndexIVFPQConfig())

Constructs a new instance with an empty flat quantizer; the user provides the number of IVF lists desired.

GpuIndexIVFPQ(GpuResourcesProvider *provider, Index *coarseQuantizer, int dims, idx_t nlist, idx_t subQuantizers, idx_t bitsPerCode, faiss::MetricType metric = faiss::METRIC_L2, GpuIndexIVFPQConfig config = GpuIndexIVFPQConfig())

Constructs a new instance with a provided CPU or GPU coarse quantizer; the user provides the number of IVF lists desired.

~GpuIndexIVFPQ() override
void copyFrom(const faiss::IndexIVFPQ *index)

Reserve space on the GPU for the inverted lists for num vectors, assumed equally distributed among Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexIVFPQ *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

void reserveMemory(size_t numVecs)

Reserve GPU memory in our inverted lists for this number of vectors.

void setPrecomputedCodes(bool enable)

Enable or disable pre-computed codes.

bool getPrecomputedCodes() const

Are pre-computed codes enabled?

int getNumSubQuantizers() const

Return the number of sub-quantizers we are using.

int getBitsPerCode() const

Return the number of bits per PQ code.

int getCentroidsPerSubQuantizer() const

Return the number of centroids per PQ code (2^bits per code)

size_t reclaimMemory()

After adding vectors, one can call this to reclaim device memory to exactly the amount needed. Returns space reclaimed in bytes

virtual void reset() override

Clears out all inverted lists, but retains the coarse and product centroid information

virtual void updateQuantizer() override

Should be called if the user ever changes the state of the IVF coarse quantizer manually (e.g., substitutes a new instance or changes vectors in the coarse quantizer outside the scope of training)

virtual void train(idx_t n, const float *x) override

Trains the coarse and product quantizer based on the given vector data.

void copyFrom(const faiss::IndexIVF *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::IndexIVF *index) const

Copy what we have to the CPU equivalent.

virtual idx_t getNumLists() const

Returns the number of inverted lists we’re managing.

virtual idx_t getListLength(idx_t listId) const

Returns the number of vectors present in a particular inverted list.

virtual std::vector<uint8_t> getListVectorData(idx_t listId, bool gpuFormat = false) const

Return the encoded vector data contained in a particular inverted list, for debugging purposes. If gpuFormat is true, the data is returned as it is encoded in the GPU-side representation. Otherwise, it is converted to the CPU format. compliant format, while the native GPU format may differ.

virtual std::vector<idx_t> getListIndices(idx_t listId) const

Return the vector indices contained in a particular inverted list, for debugging purposes.

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const SearchParametersIVF *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

ProductQuantizer pq

Like the CPU version, we expose a publically-visible ProductQuantizer for manipulation

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

Protected Functions

void setIndex_(GpuResources *resources, int dim, idx_t nlist, faiss::MetricType metric, float metricArg, int numSubQuantizers, int bitsPerSubQuantizer, bool useFloat16LookupTables, bool useMMCodeDistance, bool interleavedLayout, float *pqCentroidData, IndicesOptions indicesOptions, MemorySpace space)

Initialize appropriate index.

void verifyPQSettings_() const

Throws errors if configuration settings are improper.

void trainResidualQuantizer_(idx_t n, const float *x)

Trains the PQ quantizer based on the given vector data.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

int getCurrentNProbe_(const SearchParameters *params) const

From either the current set nprobe or the SearchParameters if available, return the nprobe that we should use for the current search

void verifyIVFSettings_() const
virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void trainQuantizer_(idx_t n, const float *x)
virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add/add_with_ids.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

Protected Attributes

const GpuIndexIVFPQConfig ivfpqConfig_

Our configuration options that we were initialized with.

bool usePrecomputedTables_

Runtime override: whether or not we use precomputed tables.

int subQuantizers_

Number of sub-quantizers per encoded vector.

int bitsPerCode_

Bits per sub-quantizer code.

size_t reserveMemoryVecs_

Desired inverted list memory reservation.

std::shared_ptr<IVFPQ> index_

The product quantizer instance that we own; contains the inverted lists

const GpuIndexIVFConfig ivfConfig_

Our configuration options.

std::shared_ptr<IVFBase> baseIndex_

For a trained/initialized index, this is a reference to the base class.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

struct GpuIndexIVFScalarQuantizerConfig : public faiss::gpu::GpuIndexIVFConfig

Public Members

bool interleavedLayout = true

Use the alternative memory layout for the IVF lists (currently the default)

IndicesOptions indicesOptions = INDICES_64_BIT

Index storage options for the GPU.

GpuIndexFlatConfig flatConfig

Configuration for the coarse quantizer object.

bool allowCpuCoarseQuantizer = false

This flag controls the CPU fallback logic for coarse quantizer component of the index. When set to false (default), the cloner will throw an exception for indices not implemented on GPU. When set to true, it will fallback to a CPU implementation.

int device = 0

GPU device on which the index is resident.

MemorySpace memorySpace = MemorySpace::Device

What memory space to use for primary storage. On Pascal and above (CC 6+) architectures, allows GPUs to use more memory than is available on the GPU.

bool use_cuvs = false

Should the index dispatch down to cuVS?

class GpuIndexIVFScalarQuantizer : public faiss::gpu::GpuIndexIVF
#include <GpuIndexIVFScalarQuantizer.h>

Wrapper around the GPU implementation that looks like faiss::IndexIVFScalarQuantizer

Public Types

using component_t = float
using distance_t = float

Public Functions

GpuIndexIVFScalarQuantizer(GpuResourcesProvider *provider, const faiss::IndexIVFScalarQuantizer *index, GpuIndexIVFScalarQuantizerConfig config = GpuIndexIVFScalarQuantizerConfig())

Construct from a pre-existing faiss::IndexIVFScalarQuantizer instance, copying data over to the given GPU, if the input index is trained.

GpuIndexIVFScalarQuantizer(GpuResourcesProvider *provider, int dims, idx_t nlist, faiss::ScalarQuantizer::QuantizerType qtype, faiss::MetricType metric = MetricType::METRIC_L2, bool encodeResidual = true, GpuIndexIVFScalarQuantizerConfig config = GpuIndexIVFScalarQuantizerConfig())

Constructs a new instance with an empty flat quantizer; the user provides the number of IVF lists desired.

GpuIndexIVFScalarQuantizer(GpuResourcesProvider *provider, Index *coarseQuantizer, int dims, idx_t nlist, faiss::ScalarQuantizer::QuantizerType qtype, faiss::MetricType metric = MetricType::METRIC_L2, bool encodeResidual = true, GpuIndexIVFScalarQuantizerConfig config = GpuIndexIVFScalarQuantizerConfig())

Constructs a new instance with a provided CPU or GPU coarse quantizer; the user provides the number of IVF lists desired.

~GpuIndexIVFScalarQuantizer() override
void reserveMemory(size_t numVecs)

Reserve GPU memory in our inverted lists for this number of vectors.

void copyFrom(const faiss::IndexIVFScalarQuantizer *index)

Initialize ourselves from the given CPU index; will overwrite all data in ourselves

void copyTo(faiss::IndexIVFScalarQuantizer *index) const

Copy ourselves to the given CPU index; will overwrite all data in the index instance

size_t reclaimMemory()

After adding vectors, one can call this to reclaim device memory to exactly the amount needed. Returns space reclaimed in bytes

virtual void reset() override

Clears out all inverted lists, but retains the coarse and scalar quantizer information

virtual void updateQuantizer() override

Should be called if the user ever changes the state of the IVF coarse quantizer manually (e.g., substitutes a new instance or changes vectors in the coarse quantizer outside the scope of training)

virtual void train(idx_t n, const float *x) override

Trains the coarse and scalar quantizer based on the given vector data.

void copyFrom(const faiss::IndexIVF *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::IndexIVF *index) const

Copy what we have to the CPU equivalent.

virtual idx_t getNumLists() const

Returns the number of inverted lists we’re managing.

virtual idx_t getListLength(idx_t listId) const

Returns the number of vectors present in a particular inverted list.

virtual std::vector<uint8_t> getListVectorData(idx_t listId, bool gpuFormat = false) const

Return the encoded vector data contained in a particular inverted list, for debugging purposes. If gpuFormat is true, the data is returned as it is encoded in the GPU-side representation. Otherwise, it is converted to the CPU format. compliant format, while the native GPU format may differ.

virtual std::vector<idx_t> getListIndices(idx_t listId) const

Return the vector indices contained in a particular inverted list, for debugging purposes.

virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const SearchParametersIVF *params = nullptr, IndexIVFStats *stats = nullptr) const override

search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the corresponding heaps with the query results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • distance – output distances, size n * k

  • labels – output labels, size n * k

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

virtual void range_search_preassigned(idx_t nx, const float *x, float radius, const idx_t *keys, const float *coarse_dis, RangeSearchResult *result, bool store_pairs = false, const IVFSearchParameters *params = nullptr, IndexIVFStats *stats = nullptr) const override

Range search a set of vectors, that are pre-quantized by the IVF quantizer. Fill in the RangeSearchResults results. The default implementation uses InvertedListScanners to do the search.

Parameters:
  • n – nb of vectors to query

  • x – query vectors, size nx * d

  • assign – coarse quantization indices, size nx * nprobe

  • centroid_dis – distances to coarse centroids, size nx * nprobe

  • result – Output results

  • store_pairs – store inv list index + inv list offset instead in upper/lower 32 bit of result, instead of ids (used for reranking).

  • params – used to override the object’s search parameters

  • stats – search stats to be updated (can be null)

int getDevice() const

Returns the device that this index is resident on.

std::shared_ptr<GpuResources> getResources()

Returns a reference to our GpuResources object that manages memory, stream and handle resources on the GPU

void setMinPagingSize(size_t size)

Set the minimum data size for searches (in MiB) for which we use CPU -> GPU paging

size_t getMinPagingSize() const

Returns the current minimum data size for paged searches.

virtual void add(idx_t, const float *x) override

x can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void add_with_ids(idx_t n, const float *x, const idx_t *ids) override

x and ids can be resident on the CPU or any GPU; copies are performed as needed Handles paged adds if the add set is too large; calls addInternal_

virtual void assign(idx_t n, const float *x, idx_t *labels, idx_t k = 1) const override

x and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const SearchParameters *params = nullptr) const override

x, distances and labels can be resident on the CPU or any GPU; copies are performed as needed

virtual void search_and_reconstruct(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, float *recons, const SearchParameters *params = nullptr) const override

x, distances and labels and recons can be resident on the CPU or any GPU; copies are performed as needed

virtual void compute_residual(const float *x, float *residual, idx_t key) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void compute_residual_n(idx_t n, const float *xs, float *residuals, const idx_t *keys) const override

Overridden to force GPU indices to provide their own GPU-friendly implementation

virtual void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result, const SearchParameters *params = nullptr) const

query n vectors of dimension d to the index.

return all vectors with distance < radius. Note that many indexes do not implement the range_search (only the k-NN search is mandatory).

Parameters:
  • n – number of vectors

  • x – input vectors to search, size n * d

  • radius – search radius

  • result – result table

virtual size_t remove_ids(const IDSelector &sel)

removes IDs from the index. Not supported by all indexes. Returns the number of elements removed.

virtual void reconstruct(idx_t key, float *recons) const

Reconstruct a stored vector (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • key – id of the vector to reconstruct

  • recons – reconstucted vector (size d)

virtual void reconstruct_batch(idx_t n, const idx_t *keys, float *recons) const

Reconstruct several stored vectors (or an approximation if lossy coding)

this function may not be defined for some indexes

Parameters:
  • n – number of vectors to reconstruct

  • keys – ids of the vectors to reconstruct (size n)

  • recons – reconstucted vector (size n * d)

virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const

Reconstruct vectors i0 to i0 + ni - 1

this function may not be defined for some indexes

Parameters:
  • i0 – index of the first vector in the sequence

  • ni – number of vectors in the sequence

  • recons – reconstucted vector (size ni * d)

virtual DistanceComputer *get_distance_computer() const

Get a DistanceComputer (defined in AuxIndexStructures) object for this kind of index.

DistanceComputer is implemented for indexes that support random access of their vectors.

virtual size_t sa_code_size() const

size of the produced codes in bytes

virtual void sa_encode(idx_t n, const float *x, uint8_t *bytes) const

encode a set of vectors

Parameters:
  • n – number of vectors

  • x – input vectors, size n * d

  • bytes – output encoded vectors, size n * sa_code_size()

virtual void sa_decode(idx_t n, const uint8_t *bytes, float *x) const

decode a set of vectors

Parameters:
  • n – number of vectors

  • bytes – input encoded vectors, size n * sa_code_size()

  • x – output vectors, size n * d

virtual void merge_from(Index &otherIndex, idx_t add_id = 0)

moves the entries from another dataset to self. On output, other is empty. add_id is added to all moved ids (for sequential ids, this would be this->ntotal)

virtual void check_compatible_for_merge(const Index &otherIndex) const

check that the two indexes are compatible (ie, they are trained in the same way and have the same parameters). Otherwise throw.

virtual void add_sa_codes(idx_t n, const uint8_t *codes, const idx_t *xids)

Add vectors that are computed with the standalone codec

Parameters:
  • codes – codes to add size n * sa_code_size()

  • xids – corresponding ids, size n

void train_q1(size_t n, const float *x, bool verbose, MetricType metric_type)

Trains the quantizer and calls train_residual to train sub-quantizers.

size_t coarse_code_size() const

compute the number of bytes required to store list ids

void encode_listno(idx_t list_no, uint8_t *code) const
idx_t decode_listno(const uint8_t *code) const

Public Members

faiss::ScalarQuantizer sq

Exposed like the CPU version.

bool by_residual

Exposed like the CPU version.

int d

vector dimension

idx_t ntotal

total nb of indexed vectors

bool verbose

verbosity level

bool is_trained

set if the Index does not require training, or if training is done already

MetricType metric_type

type of metric this index uses for search

float metric_arg

argument of the metric type

size_t nprobe = 1

number of probes at query time

size_t max_codes = 0

max nb of codes to visit to do a query

Index *quantizer = nullptr

quantizer that maps vectors to inverted lists

size_t nlist = 0

number of inverted lists

char quantizer_trains_alone = 0

= 0: use the quantizer as index in a kmeans training = 1: just pass on the training set to the train() of the quantizer = 2: kmeans training on a flat index + add the centroids to the quantizer

bool own_fields = false

whether object owns the quantizer

ClusteringParameters cp

to override default clustering params

Index *clustering_index = nullptr

to override index used during clustering

Protected Functions

void verifySQSettings_() const

Validates index SQ parameters.

void trainResiduals_(idx_t n, const float *x)

Called from train to handle SQ residual training.

void copyFrom(const faiss::Index *index)

Copy what we need from the CPU equivalent.

void copyTo(faiss::Index *index) const

Copy what we have to the CPU equivalent.

int getCurrentNProbe_(const SearchParameters *params) const

From either the current set nprobe or the SearchParameters if available, return the nprobe that we should use for the current search

void verifyIVFSettings_() const
virtual bool addImplRequiresIDs_() const override

Does addImpl_ require IDs? If so, and no IDs are provided, we will generate them sequentially based on the order in which the IDs are added

virtual void trainQuantizer_(idx_t n, const float *x)
virtual void addImpl_(idx_t n, const float *x, const idx_t *ids) override

Called from GpuIndex for add/add_with_ids.

virtual void searchImpl_(idx_t n, const float *x, int k, float *distances, idx_t *labels, const SearchParameters *params) const override

Called from GpuIndex for search.

Protected Attributes

const GpuIndexIVFScalarQuantizerConfig ivfSQConfig_

Our configuration options.

size_t reserveMemoryVecs_

Desired inverted list memory reservation.

std::shared_ptr<IVFFlat> index_

Instance that we own; contains the inverted list.

const GpuIndexIVFConfig ivfConfig_

Our configuration options.

std::shared_ptr<IVFBase> baseIndex_

For a trained/initialized index, this is a reference to the base class.

std::shared_ptr<GpuResources> resources_

Manages streams, cuBLAS handles and scratch memory for devices.

const GpuIndexConfig config_

Our configuration options.

size_t minPagedSize_

Size above which we page copies from the CPU to GPU.

struct AllocInfo
#include <GpuResources.h>

Information on what/where an allocation is.

Subclassed by faiss::gpu::AllocRequest

Public Functions

inline AllocInfo()
inline AllocInfo(AllocType at, int dev, MemorySpace sp, cudaStream_t st)
std::string toString() const

Returns a string representation of this info.

Public Members

AllocType type = AllocType::Other

The internal category of the allocation.

int device = 0

The device on which the allocation is happening.

MemorySpace space = MemorySpace::Device

The memory space of the allocation.

cudaStream_t stream = nullptr

The stream on which new work on the memory will be ordered (e.g., if a piece of memory cached and to be returned for this call was last used on stream 3 and a new memory request is for stream 4, the memory manager will synchronize stream 4 to wait for the completion of stream 3 via events or other stream synchronization.

The memory manager guarantees that the returned memory is free to use without data races on this stream specified.

struct AllocRequest : public faiss::gpu::AllocInfo
#include <GpuResources.h>

Information on what/where an allocation is, along with how big it should be.

Public Functions

inline AllocRequest()
inline AllocRequest(const AllocInfo &info, size_t sz)
inline AllocRequest(AllocType at, int dev, MemorySpace sp, cudaStream_t st, size_t sz)
std::string toString() const

Returns a string representation of this request.

Public Members

size_t size = 0

The size in bytes of the allocation.

AllocType type = AllocType::Other

The internal category of the allocation.

int device = 0

The device on which the allocation is happening.

MemorySpace space = MemorySpace::Device

The memory space of the allocation.

cudaStream_t stream = nullptr

The stream on which new work on the memory will be ordered (e.g., if a piece of memory cached and to be returned for this call was last used on stream 3 and a new memory request is for stream 4, the memory manager will synchronize stream 4 to wait for the completion of stream 3 via events or other stream synchronization.

The memory manager guarantees that the returned memory is free to use without data races on this stream specified.

struct GpuMemoryReservation
#include <GpuResources.h>

A RAII object that manages a temporary memory request.

Public Functions

GpuMemoryReservation()
GpuMemoryReservation(GpuResources *r, int dev, cudaStream_t str, void *p, size_t sz)
GpuMemoryReservation(GpuMemoryReservation &&m) noexcept
~GpuMemoryReservation()
GpuMemoryReservation &operator=(GpuMemoryReservation &&m)
inline void *get()
void release()

Public Members

GpuResources *res
int device
cudaStream_t stream
void *data
size_t size
class GpuResources
#include <GpuResources.h>

Base class of GPU-side resource provider; hides provision of cuBLAS handles, CUDA streams and all device memory allocation performed

Subclassed by faiss::gpu::StandardGpuResourcesImpl

Public Functions

virtual ~GpuResources()
virtual void initializeForDevice(int device) = 0

Call to pre-allocate resources for a particular device. If this is not called, then resources will be allocated at the first time of demand

virtual bool supportsBFloat16(int device) = 0

Does the given GPU support bfloat16?

virtual cublasHandle_t getBlasHandle(int device) = 0

Returns the cuBLAS handle that we use for the given device.

virtual cudaStream_t getDefaultStream(int device) = 0

Returns the stream that we order all computation on for the given device

virtual void setDefaultStream(int device, cudaStream_t stream) = 0

Overrides the default stream for a device to the user-supplied stream. The resources object does not own this stream (i.e., it will not destroy it).

virtual std::vector<cudaStream_t> getAlternateStreams(int device) = 0

Returns the set of alternative streams that we use for the given device.

virtual void *allocMemory(const AllocRequest &req) = 0

Memory management Returns an allocation from the given memory space, ordered with respect to the given stream (i.e., the first user will be a kernel in this stream). All allocations are sized internally to be the next highest multiple of 16 bytes, and all allocations returned are guaranteed to be 16 byte aligned.

virtual void deallocMemory(int device, void *in) = 0

Returns a previous allocation.

virtual size_t getTempMemoryAvailable(int device) const = 0

For MemorySpace::Temporary, how much space is immediately available without cudaMalloc allocation?

virtual std::pair<void*, size_t> getPinnedMemory() = 0

Returns the available CPU pinned memory buffer.

virtual cudaStream_t getAsyncCopyStream(int device) = 0

Returns the stream on which we perform async CPU <-> GPU copies.

bool supportsBFloat16CurrentDevice()

Does the current GPU support bfloat16?

Functions provided by default

cublasHandle_t getBlasHandleCurrentDevice()

Calls getBlasHandle with the current device.

cudaStream_t getDefaultStreamCurrentDevice()

Calls getDefaultStream with the current device.

size_t getTempMemoryAvailableCurrentDevice() const

Calls getTempMemoryAvailable with the current device.

GpuMemoryReservation allocMemoryHandle(const AllocRequest &req)

Returns a temporary memory allocation via a RAII object.

void syncDefaultStream(int device)

Synchronizes the CPU with respect to the default stream for the given device

void syncDefaultStreamCurrentDevice()

Calls syncDefaultStream for the current device.

std::vector<cudaStream_t> getAlternateStreamsCurrentDevice()

Calls getAlternateStreams for the current device.

cudaStream_t getAsyncCopyStreamCurrentDevice()

Calls getAsyncCopyStream for the current device.

class GpuResourcesProvider
#include <GpuResources.h>

Interface for a provider of a shared resources object. This is to avoid interfacing std::shared_ptr to Python

Subclassed by faiss::gpu::GpuResourcesProviderFromInstance, faiss::gpu::StandardGpuResources

Public Functions

virtual ~GpuResourcesProvider()
virtual std::shared_ptr<GpuResources> getResources() = 0

Returns the shared resources object.

class GpuResourcesProviderFromInstance : public faiss::gpu::GpuResourcesProvider
#include <GpuResources.h>

A simple wrapper for a GpuResources object to make a GpuResourcesProvider out of it again

Public Functions

explicit GpuResourcesProviderFromInstance(std::shared_ptr<GpuResources> p)
~GpuResourcesProviderFromInstance() override
virtual std::shared_ptr<GpuResources> getResources() override

Returns the shared resources object.

Private Members

std::shared_ptr<GpuResources> res_
template<typename GpuIndex>
struct IndexWrapper

Public Functions

IndexWrapper(int numGpus, std::function<std::unique_ptr<GpuIndex>(GpuResourcesProvider*, int)> init)
faiss::Index *getIndex()
void runOnIndices(std::function<void(GpuIndex*)> f)
void setNumProbes(size_t nprobe)

Public Members

std::vector<std::unique_ptr<faiss::gpu::StandardGpuResources>> resources
std::vector<std::unique_ptr<GpuIndex>> subIndex
std::unique_ptr<faiss::IndexReplicas> replicaIndex
class StandardGpuResourcesImpl : public faiss::gpu::GpuResources
#include <StandardGpuResources.h>

Standard implementation of the GpuResources object that provides for a temporary memory manager

Public Functions

StandardGpuResourcesImpl()
~StandardGpuResourcesImpl() override
virtual bool supportsBFloat16(int device) override

Does the given GPU support bfloat16?

void noTempMemory()

Disable allocation of temporary memory; all temporary memory requests will call cudaMalloc / cudaFree at the point of use

void setTempMemory(size_t size)

Specify that we wish to use a certain fixed size of memory on all devices as temporary memory. This is the upper bound for the GPU memory that we will reserve. We will never go above 1.5 GiB on any GPU; smaller GPUs (with <= 4 GiB or <= 8 GiB) will use less memory than that. To avoid any temporary memory allocation, pass 0.

void setPinnedMemory(size_t size)

Set amount of pinned memory to allocate, for async GPU <-> CPU transfers

virtual void setDefaultStream(int device, cudaStream_t stream) override

Called to change the stream for work ordering. We do not own stream; i.e., it will not be destroyed when the GpuResources object gets cleaned up. We are guaranteed that all Faiss GPU work is ordered with respect to this stream upon exit from an index or other Faiss GPU call.

void revertDefaultStream(int device)

Revert the default stream to the original stream managed by this resources object, in case someone called setDefaultStream.

virtual cudaStream_t getDefaultStream(int device) override

Returns the stream for the given device on which all Faiss GPU work is ordered. We are guaranteed that all Faiss GPU work is ordered with respect to this stream upon exit from an index or other Faiss GPU call.

void setDefaultNullStreamAllDevices()

Called to change the work ordering streams to the null stream for all devices

void setLogMemoryAllocations(bool enable)

If enabled, will print every GPU memory allocation and deallocation to standard output

virtual void initializeForDevice(int device) override

Internal system calls.

Initialize resources for this device

virtual cublasHandle_t getBlasHandle(int device) override

Returns the cuBLAS handle that we use for the given device.

virtual std::vector<cudaStream_t> getAlternateStreams(int device) override

Returns the set of alternative streams that we use for the given device.

virtual void *allocMemory(const AllocRequest &req) override

Allocate non-temporary GPU memory.

virtual void deallocMemory(int device, void *in) override

Returns a previous allocation.

virtual size_t getTempMemoryAvailable(int device) const override

For MemorySpace::Temporary, how much space is immediately available without cudaMalloc allocation?

std::map<int, std::map<std::string, std::pair<int, size_t>>> getMemoryInfo() const

Export a description of memory used for Python.

virtual std::pair<void*, size_t> getPinnedMemory() override

Returns the available CPU pinned memory buffer.

virtual cudaStream_t getAsyncCopyStream(int device) override

Returns the stream on which we perform async CPU <-> GPU copies.

bool supportsBFloat16CurrentDevice()

Does the current GPU support bfloat16?

Functions provided by default

cublasHandle_t getBlasHandleCurrentDevice()

Calls getBlasHandle with the current device.

cudaStream_t getDefaultStreamCurrentDevice()

Calls getDefaultStream with the current device.

size_t getTempMemoryAvailableCurrentDevice() const

Calls getTempMemoryAvailable with the current device.

GpuMemoryReservation allocMemoryHandle(const AllocRequest &req)

Returns a temporary memory allocation via a RAII object.

void syncDefaultStream(int device)

Synchronizes the CPU with respect to the default stream for the given device

void syncDefaultStreamCurrentDevice()

Calls syncDefaultStream for the current device.

std::vector<cudaStream_t> getAlternateStreamsCurrentDevice()

Calls getAlternateStreams for the current device.

cudaStream_t getAsyncCopyStreamCurrentDevice()

Calls getAsyncCopyStream for the current device.

Protected Functions

bool isInitialized(int device) const

Have GPU resources been initialized for this device yet?

Protected Attributes

std::unordered_map<int, std::unordered_map<void*, AllocRequest>> allocs_

Set of currently outstanding memory allocations per device device -> (alloc request, allocated ptr)

std::unordered_map<int, std::unique_ptr<StackDeviceMemory>> tempMemory_

Temporary memory provider, per each device.

std::unordered_map<int, cudaStream_t> defaultStreams_

Our default stream that work is ordered on, one per each device.

std::unordered_map<int, cudaStream_t> userDefaultStreams_

This contains particular streams as set by the user for ordering, if any

std::unordered_map<int, std::vector<cudaStream_t>> alternateStreams_

Other streams we can use, per each device.

std::unordered_map<int, cudaStream_t> asyncCopyStreams_

Async copy stream to use for GPU <-> CPU pinned memory copies.

std::unordered_map<int, cublasHandle_t> blasHandles_

cuBLAS handle for each device

void *pinnedMemAlloc_

Pinned memory allocation for use with this GPU.

size_t pinnedMemAllocSize_
size_t tempMemSize_

Another option is to use a specified amount of memory on all devices

size_t pinnedMemSize_

Amount of pinned memory we should allocate.

bool allocLogging_

Whether or not we log every GPU memory allocation and deallocation.

Protected Static Functions

static size_t getDefaultTempMemForGPU(int device, size_t requested)

Adjust the default temporary memory allocation based on the total GPU memory size

class StandardGpuResources : public faiss::gpu::GpuResourcesProvider
#include <StandardGpuResources.h>

Default implementation of GpuResources that allocates a cuBLAS stream and 2 streams for use, as well as temporary memory. Internally, the Faiss GPU code uses the instance managed by getResources, but this is the user-facing object that is internally reference counted.

Public Functions

StandardGpuResources()
~StandardGpuResources() override
virtual std::shared_ptr<GpuResources> getResources() override

Returns the shared resources object.

bool supportsBFloat16(int device)

Whether or not the given device supports native bfloat16 arithmetic.

bool supportsBFloat16CurrentDevice()

Whether or not the current device supports native bfloat16 arithmetic.

void noTempMemory()

Disable allocation of temporary memory; all temporary memory requests will call cudaMalloc / cudaFree at the point of use

void setTempMemory(size_t size)

Specify that we wish to use a certain fixed size of memory on all devices as temporary memory. This is the upper bound for the GPU memory that we will reserve. We will never go above 1.5 GiB on any GPU; smaller GPUs (with <= 4 GiB or <= 8 GiB) will use less memory than that. To avoid any temporary memory allocation, pass 0.

void setPinnedMemory(size_t size)

Set amount of pinned memory to allocate, for async GPU <-> CPU transfers

void setDefaultStream(int device, cudaStream_t stream)

Called to change the stream for work ordering. We do not own stream; i.e., it will not be destroyed when the GpuResources object gets cleaned up. We are guaranteed that all Faiss GPU work is ordered with respect to this stream upon exit from an index or other Faiss GPU call.

void revertDefaultStream(int device)

Revert the default stream to the original stream managed by this resources object, in case someone called setDefaultStream.

void setDefaultNullStreamAllDevices()

Called to change the work ordering streams to the null stream for all devices

std::map<int, std::map<std::string, std::pair<int, size_t>>> getMemoryInfo() const

Export a description of memory used for Python.

cudaStream_t getDefaultStream(int device)

Returns the current default stream.

size_t getTempMemoryAvailable(int device) const

Returns the current amount of temp memory available.

void syncDefaultStreamCurrentDevice()

Synchronize our default stream with the CPU.

void setLogMemoryAllocations(bool enable)

If enabled, will print every GPU memory allocation and deallocation to standard output

Private Members

std::shared_ptr<StandardGpuResourcesImpl> res_
class DeviceScope
#include <DeviceUtils.h>

RAII object to set the current device, and restore the previous device upon destruction

Public Functions

explicit DeviceScope(int device)
~DeviceScope()

Private Members

int prevDevice_
class CublasHandleScope
#include <DeviceUtils.h>

RAII object to manage a cublasHandle_t.

Public Functions

CublasHandleScope()
~CublasHandleScope()
inline cublasHandle_t get()

Private Members

cublasHandle_t blasHandle_
class CudaEvent

Public Functions

explicit CudaEvent(cudaStream_t stream, bool timer = false)

Creates an event and records it in this stream.

CudaEvent(const CudaEvent &event) = delete
CudaEvent(CudaEvent &&event) noexcept
~CudaEvent()
inline cudaEvent_t get()
void streamWaitOnEvent(cudaStream_t stream)

Wait on this event in this stream.

void cpuWaitOnEvent()

Have the CPU wait for the completion of this event.

CudaEvent &operator=(CudaEvent &&event) noexcept
CudaEvent &operator=(CudaEvent &event) = delete

Private Members

cudaEvent_t event_
class StackDeviceMemory
#include <StackDeviceMemory.h>

Device memory manager that provides temporary memory allocations out of a region of memory, for a single device

Public Functions

StackDeviceMemory(GpuResources *res, int device, size_t allocPerDevice)

Allocate a new region of memory that we manage.

StackDeviceMemory(int device, void *p, size_t size, bool isOwner)

Manage a region of memory for a particular device, with or without ownership

~StackDeviceMemory()
int getDevice() const
void *allocMemory(cudaStream_t stream, size_t size)

All allocations requested should be a multiple of 16 bytes.

void deallocMemory(int device, cudaStream_t, size_t size, void *p)
size_t getSizeAvailable() const
std::string toString() const

Protected Attributes

int device_

Our device.

Stack stack_

Memory stack.

struct Range
#include <StackDeviceMemory.h>

Previous allocation ranges and the streams for which synchronization is required

Public Functions

inline Range(char *s, char *e, cudaStream_t str)

Public Members

char *start_
char *end_
cudaStream_t stream_
struct Stack

Public Functions

Stack(GpuResources *res, int device, size_t size)

Constructor that allocates memory via cudaMalloc.

~Stack()
size_t getSizeAvailable() const

Returns how much size is available for an allocation without calling cudaMalloc

char *getAlloc(size_t size, cudaStream_t stream)

Obtains an allocation; all allocations are guaranteed to be 16 byte aligned

void returnAlloc(char *p, size_t size, cudaStream_t stream)

Returns an allocation.

std::string toString() const

Returns the stack state.

Public Members

GpuResources *res_

Our GpuResources object.

int device_

Device this allocation is on.

char *alloc_

Where our temporary memory buffer is allocated; we allocate starting 16 bytes into this

size_t allocSize_

Total size of our allocation.

char *start_

Our temporary memory region; [start_, end_) is valid.

char *end_
char *head_

Stack head within [start, end)

std::list<Range> lastUsers_

List of previous last users of allocations on our stack, for possible synchronization purposes

size_t highWaterMemoryUsed_

What’s the high water mark in terms of memory used from the temporary buffer?

class KernelTimer
#include <Timer.h>

Utility class for timing execution of a kernel.

Public Functions

KernelTimer(cudaStream_t stream = nullptr)

Constructor starts the timer and adds an event into the current device stream

~KernelTimer()

Destructor releases event resources.

float elapsedMilliseconds()

Adds a stop event then synchronizes on the stop event to get the actual GPU-side kernel timings for any kernels launched in the current stream. Returns the number of milliseconds elapsed. Can only be called once.

Private Members

cudaEvent_t startEvent_
cudaEvent_t stopEvent_
cudaStream_t stream_
bool valid_
class CpuTimer
#include <Timer.h>

CPU wallclock elapsed timer.

Public Functions

CpuTimer()

Creates and starts a new timer.

float elapsedMilliseconds()

Returns elapsed time in milliseconds.

Private Members

std::chrono::time_point<std::chrono::steady_clock> start_
namespace utils

Functions

template<typename U, typename V> constexpr __host__ __device__ auto divDown (U a, V b) -> decltype(a+b)
template<typename U, typename V> constexpr __host__ __device__ auto divUp (U a, V b) -> decltype(a+b)
template<typename U, typename V> constexpr __host__ __device__ auto roundDown (U a, V b) -> decltype(a+b)
template<typename U, typename V> constexpr __host__ __device__ auto roundUp (U a, V b) -> decltype(a+b)
template<class T> constexpr __host__ __device__ T pow (T n, T power)
template<class T> constexpr __host__ __device__ T pow2 (T n)
template<typename T> constexpr __host__ __device__ int log2 (T n, int p=0)
template<typename T> constexpr __host__ __device__ bool isPowerOf2 (T v)
template<typename T> constexpr __host__ __device__ T nextHighestPowerOf2 (T v)
namespace ivflib

Functions

void check_compatible_for_merge(const Index *index1, const Index *index2)

check if two indexes have the same parameters and are trained in the same way, otherwise throw.

const IndexIVF *extract_index_ivf(const Index *index)

get an IndexIVF from an index. The index may be an IndexIVF or some wrapper class that encloses an IndexIVF

throws an exception if this is not the case.

IndexIVF *extract_index_ivf(Index *index)
const IndexIVF *try_extract_index_ivf(const Index *index)

same as above but returns nullptr instead of throwing on failure

IndexIVF *try_extract_index_ivf(Index *index)
void merge_into(Index *index0, Index *index1, bool shift_ids)

Merge index1 into index0. Works on IndexIVF’s and IndexIVF’s embedded in a IndexPreTransform. On output, the index1 is empty.

Parameters:

shift_ids – translate the ids from index1 to index0->prev_ntotal

void search_centroid(Index *index, const float *x, int n, idx_t *centroid_ids)
void search_and_return_centroids(Index *index, size_t n, const float *xin, long k, float *distances, idx_t *labels, idx_t *query_centroid_ids, idx_t *result_centroid_ids)
ArrayInvertedLists *get_invlist_range(const Index *index, long i0, long i1)

Get a subset of inverted lists [i0, i1)

void set_invlist_range(Index *index, long i0, long i1, ArrayInvertedLists *src)

Set a subset of inverted lists.

void search_with_parameters(const Index *index, idx_t n, const float *x, idx_t k, float *distances, idx_t *labels, const IVFSearchParameters *params, size_t *nb_dis = nullptr, double *ms_per_stage = nullptr)

search an IndexIVF, possibly embedded in an IndexPreTransform with given parameters. This is a way to set the nprobe and get statdistics in a thread-safe way.

Optionally returns (if non-nullptr):

  • nb_dis: number of distances computed

  • ms_per_stage: [0]: preprocessing time [1]: coarse quantization, [2]: list scanning

void range_search_with_parameters(const Index *index, idx_t n, const float *x, float radius, RangeSearchResult *result, const IVFSearchParameters *params, size_t *nb_dis = nullptr, double *ms_per_stage = nullptr)

same as search_with_parameters but for range search

IndexIVFResidualQuantizer *ivf_residual_from_quantizer(const ResidualQuantizer&, int nlevel)

Build an IndexIVFResidualQuantizer from an ResidualQuantizer, using the nlevel first components as coarse quantizer and the rest as codes in invlists

void ivf_residual_add_from_flat_codes(IndexIVFResidualQuantizer *ivfrq, size_t ncode, const uint8_t *codes, int64_t code_size = -1)

add from codes. NB that the norm component is not used, so the code_size can be provided.

Parameters:
  • ivfrq – index to populate with the codes

  • codes – codes to add, size (ncode, code_size)

  • code_size – override the ivfrq’s code_size, useful if the norm encoding is different

struct SlidingIndexWindow
#include <IVFlib.h>

A set of IndexIVFs concatenated together in a FIFO fashion. at each “step”, the oldest index slice is removed and a new index is added.

Public Functions

SlidingIndexWindow(Index *index)

index should be initially empty and trained

void step(const Index *sub_index, bool remove_oldest)

Add one index to the current index and remove the oldest one.

Parameters:
  • sub_index – slice to swap in (can be NULL)

  • remove_oldest – if true, remove the oldest slices

Public Members

Index *index

common index that contains the sliding window

ArrayInvertedLists *ils

InvertedLists of index.

int n_slice

number of slices currently in index

size_t nlist

same as index->nlist

std::vector<std::vector<size_t>> sizes

cumulative list sizes at each slice

namespace lsq
struct IcmEncoder

Subclassed by faiss::gpu::GpuIcmEncoder

Public Functions

explicit IcmEncoder(const LocalSearchQuantizer *lsq)
inline virtual ~IcmEncoder()

compute binary terms

virtual void set_binary_term()
virtual void encode(int32_t *codes, const float *x, std::mt19937 &gen, size_t n, size_t ils_iters) const

Encode vectors given codebooks

Parameters:
  • codes – output codes, size n * M

  • x – vectors to encode, size n * d

  • gen – random generator

  • n – number of vectors

  • ils_iters – number of iterations of iterative local search

Public Members

std::vector<float> binaries
bool verbose
const LocalSearchQuantizer *lsq
struct IcmEncoderFactory

Subclassed by faiss::gpu::GpuIcmEncoderFactory

Public Functions

inline virtual IcmEncoder *get(const LocalSearchQuantizer *lsq)
inline virtual ~IcmEncoderFactory()
struct LSQTimer
#include <LocalSearchQuantizer.h>

A helper struct to count consuming time during training. It is NOT thread-safe.

Public Functions

inline LSQTimer()
double get(const std::string &name)
void add(const std::string &name, double delta)
void reset()

Public Members

std::unordered_map<std::string, double> t
struct LSQTimerScope

Public Functions

LSQTimerScope(LSQTimer *timer, std::string name)
void finish()
~LSQTimerScope()

Public Members

double t0
LSQTimer *timer
std::string name
bool finished
namespace nn

Typedefs

using Tensor2D = Tensor2DTemplate<float>
using Int32Tensor2D = Tensor2DTemplate<int32_t>
template<typename T>
struct Tensor2DTemplate

Public Functions

Tensor2DTemplate(size_t n0, size_t n1, const T *data = nullptr)
Tensor2DTemplate &operator+=(const Tensor2DTemplate&)
Tensor2DTemplate column(size_t j) const

get column #j as a 1-column Tensor2D

inline size_t numel() const
inline T *data()
inline const T *data() const

Public Members

size_t shape[2]
std::vector<T> v
struct Linear
#include <NeuralNet.h>

minimal translation of nn.Linear

Public Functions

Linear(size_t in_features, size_t out_features, bool bias = true)
Tensor2D operator()(const Tensor2D &x) const

Public Members

size_t in_features
size_t out_features
std::vector<float> weight
std::vector<float> bias
struct Embedding
#include <NeuralNet.h>

minimal translation of nn.Embedding

Public Functions

Embedding(size_t num_embeddings, size_t embedding_dim)
Tensor2D operator()(const Int32Tensor2D&) const
inline float *data()
inline const float *data() const

Public Members

size_t num_embeddings
size_t embedding_dim
std::vector<float> weight
struct FFN
#include <NeuralNet.h>

Feed forward layer that expands to a hidden dimension, applies a ReLU non linearity and maps back to the orignal dimension

Public Functions

inline FFN(int d, int h)
Tensor2D operator()(const Tensor2D &x) const

Public Members

Linear linear1
Linear linear2
namespace nndescent
struct Neighbor

Public Functions

Neighbor() = default
inline Neighbor(int id, float distance, bool f)
inline bool operator<(const Neighbor &other) const

Public Members

int id
float distance
bool flag
struct Nhood

Public Functions

Nhood() = default
Nhood(int l, int s, std::mt19937 &rng, int N)
Nhood &operator=(const Nhood &other)
Nhood(const Nhood &other)
void insert(int id, float dist)
template<typename C>
void join(C callback) const

Public Members

std::mutex lock
std::vector<Neighbor> pool
int M
std::vector<int> nn_old
std::vector<int> nn_new
std::vector<int> rnn_old
std::vector<int> rnn_new
namespace nsg

Functions

DistanceComputer *storage_distance_computer(const Index *storage)
template<class node_t>
struct Graph

Public Functions

inline Graph(node_t *data, int N, int K)
inline Graph(int N, int K)
inline Graph(const Graph &g)
inline virtual ~Graph()
inline node_t at(int i, int j) const
inline node_t &at(int i, int j)
inline virtual size_t get_neighbors(int i, node_t *neighbors) const

Public Members

node_t *data

the flattened adjacency matrix, size N-by-K

int K

nb of neighbors per node

int N

total nb of nodes

bool own_fields

the underlying data owned by itself or not

namespace quantize_lut

Functions to quantize PQ floating-point Look Up Tables (LUT) to uint8, and biases to uint16. The accumulation is supposed to take place in uint16. The quantization coefficients are float (a, b) such that

 original_value = quantized_value * a / b
The hardest part of the quantization is with multiple LUTs that need to be added up together. In that case, coefficient a has to be chosen so that the sum fits in a uint16 accumulator.

Functions

void round_uint8_per_column(float *tab, size_t n, size_t d, float *a_out = nullptr, float *b_out = nullptr)
void round_uint8_per_column_multi(float *tab, size_t m, size_t n, size_t d, float *a_out = nullptr, float *b_out = nullptr)
void quantize_LUT_and_bias(size_t nprobe, size_t M, size_t ksub, bool lut_is_3d, const float *LUT, const float *bias, uint8_t *LUTq, size_t M2, uint16_t *biasq, float *a_out = nullptr, float *b_out = nullptr)

LUT quantization to uint8 and bias to uint16.

(nprobe, M, ksub, lut_is_3d) determine the size of the the LUT

LUT input:

  • 2D size (M, ksub): single matrix per probe (lut_is_3d=false)

  • 3D size (nprobe, M, ksub): separate LUT per probe (lut_is_3d=true) bias input:

  • nullptr: bias is 0

  • size (nprobe): one bias per probe Output:

  • LUTq uint8 version of the LUT (M size is rounded up to M2)

  • biasq (or nullptr): uint16 version of the LUT

  • a, b: scalars to approximate the true distance

void aq_quantize_LUT_and_bias(size_t nprobe, size_t M, size_t ksub, const float *LUT, const float *bias, size_t M_norm, int norm_scale, uint8_t *LUTq, size_t M2, uint16_t *biasq, float *a_out, float *b_out)
float aq_estimate_norm_scale(size_t M, size_t ksub, size_t M_norm, const float *LUT)
namespace rq_encode_steps

Functions

void refine_beam_mp(const ResidualQuantizer &rq, size_t n, size_t beam_size, const float *x, int out_beam_size, int32_t *out_codes, float *out_residuals, float *out_distances, RefineBeamMemoryPool &pool)
void refine_beam_LUT_mp(const ResidualQuantizer &rq, size_t n, const float *query_norms, const float *query_cp, int out_beam_size, int32_t *out_codes, float *out_distances, RefineBeamLUTMemoryPool &pool)
void compute_codes_add_centroids_mp_lut0(const ResidualQuantizer &rq, const float *x, uint8_t *codes_out, size_t n, const float *centroids, ComputeCodesAddCentroidsLUT0MemoryPool &pool)
void compute_codes_add_centroids_mp_lut1(const ResidualQuantizer &rq, const float *x, uint8_t *codes_out, size_t n, const float *centroids, ComputeCodesAddCentroidsLUT1MemoryPool &pool)
struct RefineBeamMemoryPool

Public Members

std::vector<int32_t> new_codes
std::vector<float> new_residuals
std::vector<float> residuals
std::vector<int32_t> codes
std::vector<float> distances
struct RefineBeamLUTMemoryPool

Public Members

std::vector<int32_t> new_codes
std::vector<float> new_distances
std::vector<int32_t> codes
std::vector<float> distances
struct ComputeCodesAddCentroidsLUT0MemoryPool

Public Members

std::vector<int32_t> codes
std::vector<float> norms
std::vector<float> distances
std::vector<float> residuals
RefineBeamMemoryPool refine_beam_pool
struct ComputeCodesAddCentroidsLUT1MemoryPool

Public Members

std::vector<int32_t> codes
std::vector<float> distances
std::vector<float> query_norms
std::vector<float> query_cp
std::vector<float> residuals
RefineBeamLUTMemoryPool refine_beam_lut_pool
namespace simd_result_handlers

Functions

template<class C, bool W, class Consumer, class ...Types>
void dispatch_SIMDResultHandler_fixedCW(SIMDResultHandler &res, Consumer &consumer, Types... args)
template<class C, class Consumer, class ...Types>
void dispatch_SIMDResultHandler_fixedC(SIMDResultHandler &res, Consumer &consumer, Types... args)
template<class Consumer, class ...Types>
void dispatch_SIMDResultHandler(SIMDResultHandler &res, Consumer &consumer, Types... args)
struct DummyResultHandler : public faiss::SIMDResultHandler
#include <simd_result_handlers.h>

Dummy structure that just computes a chqecksum on results (to avoid the computation to be optimized away)

Public Functions

inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void set_block_origin(size_t, size_t) final

set the sub-matrix that is being computed

inline ~DummyResultHandler()

Public Members

size_t cs = 0
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
struct StoreResultHandler : public faiss::SIMDResultHandler
#include <simd_result_handlers.h>

memorize results in a nq-by-nb matrix.

j0 is the current upper-left block of the matrix

Public Functions

inline StoreResultHandler(uint16_t *data, size_t ld)
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

Public Members

uint16_t *data
size_t ld
size_t i0 = 0
size_t j0 = 0
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<int NQ, int BB>
struct FixedStorageHandler : public faiss::SIMDResultHandler
#include <simd_result_handlers.h>

stores results in fixed-size matrix.

Public Functions

inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

template<class OtherResultHandler>
inline void to_other_handler(OtherResultHandler &other) const
inline virtual ~FixedStorageHandler()

Public Members

simd16uint16 dis[NQ][BB]
int i0 = 0
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<class C, bool with_id_map>
struct ResultHandlerCompare : public faiss::SIMDResultHandlerToFloat
#include <simd_result_handlers.h>

Result handler that compares distances to check if they need to be kept

Subclassed by faiss::simd_result_handlers::RangeHandler< C, false >

Public Types

using TI = typename C::TI

Public Functions

inline ResultHandlerCompare(size_t nq, size_t ntotal, const IDSelector *sel_in)
inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

inline virtual ~ResultHandlerCompare()
inline virtual void begin(const float *norms)
inline virtual void end()
virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) = 0

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

Public Members

bool disable = false
int64_t i0 = 0
int64_t j0 = 0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<class C, bool with_id_map = false>
struct SingleResultHandler : public faiss::simd_result_handlers::ResultHandlerCompare<C, false>
#include <simd_result_handlers.h>

Special version for k=1

Public Types

using T = typename C::T
using TI = typename C::TI
using RHC = ResultHandlerCompare<C, with_id_map>

Public Functions

inline SingleResultHandler(size_t nq, size_t ntotal, float *dis, int64_t *ids, const IDSelector *sel_in)
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void end()
inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

inline virtual void begin(const float *norms)

Public Members

std::vector<int16_t> idis
float *dis
int64_t *ids
bool disable
int64_t i0
int64_t j0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<class C, bool with_id_map = false>
struct HeapHandler : public faiss::simd_result_handlers::ResultHandlerCompare<C, false>
#include <simd_result_handlers.h>

Structure that collects results in a min- or max-heap

Public Types

using T = typename C::T
using TI = typename C::TI
using RHC = ResultHandlerCompare<C, with_id_map>

Public Functions

inline HeapHandler(size_t nq, size_t ntotal, int64_t k, float *dis, int64_t *ids, const IDSelector *sel_in)
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void end() override
inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

inline virtual void begin(const float *norms)

Public Members

std::vector<uint16_t> idis
std::vector<TI> iids
float *dis
int64_t *ids
int64_t k
bool disable
int64_t i0
int64_t j0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<class C, bool with_id_map = false>
struct ReservoirHandler : public faiss::simd_result_handlers::ResultHandlerCompare<C, false>
#include <simd_result_handlers.h>

Simple top-N implementation using a reservoir.

Results are stored when they are below the threshold until the capacity is reached. Then a partition sort is used to update the threshold. Handler built from several ReservoirTopN (one per query)

Public Types

using T = typename C::T
using TI = typename C::TI
using RHC = ResultHandlerCompare<C, with_id_map>

Public Functions

inline ReservoirHandler(size_t nq, size_t ntotal, size_t k, size_t cap, float *dis, int64_t *ids, const IDSelector *sel_in)
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void end() override
inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

inline virtual void begin(const float *norms)

Public Members

size_t capacity
float *dis
int64_t *ids
std::vector<TI> all_ids
AlignedTable<T> all_vals
std::vector<ReservoirTopN<C>> reservoirs
bool disable
int64_t i0
int64_t j0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
template<class C, bool with_id_map = false>
struct RangeHandler : public faiss::simd_result_handlers::ResultHandlerCompare<C, false>
#include <simd_result_handlers.h>

Result handler for range search. The difficulty is that the range distances have to be scaled using the scaler.

Public Types

using T = typename C::T
using TI = typename C::TI
using RHC = ResultHandlerCompare<C, with_id_map>

Public Functions

inline RangeHandler(RangeSearchResult &rres, float radius, size_t ntotal, const IDSelector *sel_in)
inline virtual void begin(const float *norms) override
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void end() override
inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

Public Members

RangeSearchResult &rres
float radius
std::vector<uint16_t> thresholds
std::vector<size_t> n_per_query
size_t q0 = 0
std::vector<Triplet> triplets
bool disable
int64_t i0
int64_t j0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false
struct Triplet

Public Members

idx_t q
idx_t b
uint16_t dis
template<class C, bool with_id_map = false>
struct PartialRangeHandler : public faiss::simd_result_handlers::RangeHandler<C, false>

Public Types

using T = typename C::T
using TI = typename C::TI
using RHC = RangeHandler<C, with_id_map>

Public Functions

inline PartialRangeHandler(RangeSearchPartialResult &pres, float radius, size_t ntotal, size_t q0, size_t q1, const IDSelector *sel_in)
inline void shift_n_per_query()
inline virtual void end() override
inline virtual void begin(const float *norms) override
inline virtual void handle(size_t q, size_t b, simd16uint16 d0, simd16uint16 d1) final

called when 32 distances are computed and provided in two simd16uint16. (q, b) indicate which entry it is in the block.

inline virtual void set_block_origin(size_t i0_in, size_t j0_in) final

set the sub-matrix that is being computed

inline void adjust_with_origin(size_t &q, simd16uint16 &d0, simd16uint16 &d1)
inline int64_t adjust_id(size_t b, size_t j)
inline uint32_t get_lt_mask(uint16_t thr, size_t b, simd16uint16 d0, simd16uint16 d1)

return binary mask of elements below thr in (d0, d1) inverse_test returns elements above

Public Members

RangeSearchPartialResult &pres
size_t q0
std::vector<Triplet> triplets
std::vector<size_t> n_per_query
RangeSearchResult &rres
float radius
std::vector<uint16_t> thresholds
bool disable = false
int64_t i0 = 0
int64_t j0 = 0
const IDSelector *sel
size_t nq
size_t ntotal
const idx_t *id_map = nullptr

these fields are used mainly for the IVF variants (with_id_map=true)

const int *q_map = nullptr
const uint16_t *dbias = nullptr
const float *normalizers = nullptr
bool is_CMax = false
uint8_t sizeof_ids = 0
bool with_fields = false